• Title/Summary/Keyword: buried metal pipelines

Search Result 16, Processing Time 0.026 seconds

Exploratory research on ultra-long polymer optical fiber-based corrosion sensing for buried metal pipelines

  • Luo, Dong;Li, Yuanyuan;Yang, Hangzhou;Sun, Hao;Chen, Hongbin
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.507-520
    • /
    • 2020
  • In order to achieve effective corrosion monitoring of buried metal pipelines, a Novel nondestructive Testing (NDT) methodology using ultra-long (250 mm) Polymer Optical Fiber (POF) sensors coated with the Fe-C alloy film is proposed in this study. The theoretical principle is investigated to clarify the monitoring mechanism of this method, and the detailed fabrication process of this novel POF sensor is presented. To validate the feasibility of this novel POF sensor, exploratory research of the proposed method was performed using simulated corrosion tests. For simplicity, the geometric shape of the buried pipeline was simulated as a round hot-rolled plain steel bar. A thin nickel layer was applied as the inner plated layer, and the Fe-C alloy film was coated using an electroless plating technique to precisely control the thickness of the alloy film. In the end, systematic sensitivity analysis on corrosion severity was further performed with experimental studies on three sensors fabricated with different metal layer thicknesses of 25 ㎛, 30 ㎛ and 35 ㎛. The experimental observation demonstrated that the sensor coated with 25 ㎛ Fe-C alloy film presented the highest effectiveness with the corrosion sensitivity of 0.3364 mV/g at Δm = 9.32 × 10-4 g in Stage I and 0.0121 mV/g in Stage III. The research findings indicate that the detection accuracy of the novel POF sensor proposed in this study is satisfying. Moreover, the simple fabrication of the high-sensitivity sensor makes it cost-effective and suitable for the on-site corrosion monitoring of buried metal pipelines.

A Study on the Design of Anode Shape using BEM (BEM(경계요소법)을 이용한 양극형상 설계 연구)

  • Lee, H.G.;Bae, J.H.;Kim, D.K.;Ha, T.H.;Choi, S.B.;Jeong, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3169-3171
    • /
    • 2000
  • Most metal structures such as gas pipelines. oil pipelines, hot water pipelines and power cables etc. are buried in underground. Normally. metal structures corrode in underground by the electrochemical reaction. Then, metal structures need to be protected against corrosion. Cathodic protection is one of useful methods to protect metal structures against corrosion. In this paper we do the design of anode shape using Boundary Element Method. So we analysis the current density of anode surface and the potential distribution in the electrolyte. Therefore we seek to maximize the anode life and the safety of metal structures.

  • PDF

Analysis of DC Traction Stray Current Influences on Buried Pipelines (전철 누설전류가 지하매설 배관엘 미치는 영향 해석)

  • Lee, H.G.;Ha, T.H.;Bae, J.H.;Ha, Y.C.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1273-1275
    • /
    • 2003
  • Corrosion of metallic structures arises when an electric current flows from the metal into the electrolyte such as soil and water. The potential difference across the metal-electrolyte interface, the driving force for the corrosion current, can emerge due to a variety of temperature, pH, humidity etc.. In this paper we analyze P/S potential and axial current of the pipeline with CP systems using BEM and DC traction stray current influences on buried pipelines.

  • PDF

Evaluation of fatigue poperties of base and weld metal for API 5L X65 pipeline (API 5L X65 배관 모재 및 용접부 피로특성 평가)

  • Kim, Cheol-Man;Baek, Jong-Hyun;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.44-48
    • /
    • 2001
  • The pipelines for natural gas transmission were buried in the ground of 1.5m depth. The pipelines were continuously subjected to vehicle load and internal pressure change by the quantity consumed of natural gas. In this paper, high cycle fatigue properties of natural gas transmission pipelines were studied. Fatigue specimens were obtained from the base and weld metal of circular pipe. Fatigue strength increased with increasing yield strength. Especially, the fatigue strength of base metal was higher than the yield strength of base metal and the fatigue strength of weld metal by manufactured process of TMCP.

  • PDF

Study on the Influence of Stray current Between Sacrificial Anode Cathodic Protection and Impressed Current Cathodic Protection in Marine Environment

  • Jeong, Jin-A;Kim, Ki-Joon
    • Corrosion Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.77-81
    • /
    • 2012
  • Cathodic protection(CP) is widely used as a means of protecting corrosion for not only marine structures like ship hulls and offshore drilling facilities, but also underground structures like buried pipelines and oil storage tanks. The principle of CP is that the anodic dissolution of metal can be protected by supplying electrons to the cathode metal. When unprotected structures are nearby to CP systems, interference problems between unprotected and protected structures may be happened. The stray current interference can accelerate the corrosion of nearby structures. So far many efforts have been made to reduce the interference in the electric railway systems adjacent to the underground metal structures like buried pipelines and gas/oil tanks. During recent few decades the protection technologies against stray current induced corrosion have been significantly improved and a number of techniques have been developed. However, there is very limited information an marine environments. Some complex harbor structures are protected by two cathodic protection systems, i.e. sacrificial anode cathodic protection(SACP) and impressed current cathodic protection(ICCP). In this case, when the protection current from sacrificial anodes returns to the cathode through electrolyte, it passes through nearby other low resistance metal structures. In many cases the stray current of ICCP systems influences the function of SACP. In this study, the risk of stray current from the SACP system to adjacent reinforced concrete structures has been verified through laboratory experiments. Concrete and steel pile structures modeled a part of bridge have been investigated in terms of CP potential and current between the two. The variation of stray current according to the magnitude of ICCP/SACP has been studied to mitigate it and to suggest the proper protection criteria.

Investigation for Earth Resistance and Leakage Current of D/L (배전선로 접지저항 및 누설전류 실태조사)

  • Lee, H.G.;Ha, T.H.;Bae, J.H.;Ha, Y.C.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.379-381
    • /
    • 2003
  • The sharing of common corridors by electric power transmission lines and pipelines is becoming more common place. However, such corridor sharing can result in undesired coupling of electromagnetic energy from the power lines to the near facilities. This causes induced voltages on underground metallic pipelines due to the power line currents. This could cause AC corrosion in the pipeline, which could in turn lead to disastrous accidents, such as gas explosion or oil leakage. This paper investigates for the limitation of induced voltage on the buried metal structures which is used in the inside and outside of the country. And then we measure the earth resistance and leakage current of 22.9kV distribution lines and pipe to soil potential of near pipelines in Seoul Korea. Hereby we can see the leakage current flowing through the earthing electrode have an effect on near pipelines.

  • PDF

Buried Polyethylene Gas Pipes Analysis using Finite Element Method under External Loadings (외부 하중에 대한 매설 폴리에틸렌 가스배관의 유한요소 해석)

  • Kil, Seong-Hee;Jo, Do-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.49-55
    • /
    • 2007
  • Polyethylene pipes have been widely used as they are easy to construct and suitable for economical efficient when they are compared with metal pipelines. This paper studies the effect of various external loadings on stress and deflection of the buried PE pipes using Finite Element Method(FEM). For this purpose, stresses of buried PE pipes are calculated according to the loading condition such as pipe types (pipe diameter $50{\sim}400mm$), burial depths ($0.6{\sim}1.2m$) and internal pressures ($0.4{\sim}4bar$). As a result, it is founded the effect and relation with each of loading conditions under the buried condition.

  • PDF

Impact of geometric pattern corrosion on limit failure pressure of buried gas pipelines

  • Hassani, Nemat;Kolbadi, S. Mohammad S.;Shiravand, Mahmud Reza;Golafshani, Jafar H.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.795-802
    • /
    • 2016
  • Gas pipelines are types of structures that are highly susceptible to corrosion. Sometimes, the pipes are subjected to a thinning of the wall thickness at the inside or outside wall due to erosion/corrosion. Therefore, it is important to evaluate the strength of the pipes undergoing corrosion to maintain the integrity of the piping systems. The main purpose of this study is to understand failure aspects caused by degradation of metal due to corrosion through. The ASME standard offers a relationship for the yielding pressure of the corroded pipes which was compared with the finite element results. The results demonstrate to obtain accurate results, the ASME relationship is unreliable. Moreover, pitting corrosion must be considered critical more than of other types.

Experiment on the Feasibility of Cleaning Building Pipelines using Ultrasonic Cavitation

  • Jo, Jae-Hyun;Lee, Ung-Kyun;Kim, Jae-Yeob;Lee, Sungchul;Kim, Kukhyun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.295-303
    • /
    • 2022
  • Residential heating systems in South Korea are largely based on the use of ondol pipelines. Heat is transferred to the floor by passing hot water through a metal or plastic pipe buried within the concrete of the floor. Consequently, it is difficult to clean the inside of these pipes after installation. Over time, foreign substances such as scale accumulate in the pipe when the ondol heating method is used for an extended period. Therefore, in the past, pipes were cleaned by removing foreign substances attached to the inside surfaces of the pipes using high-pressure water or by disassembling the pipes and removing foreign substances with chemical agents. Recently, a method for removing foreign substances through the cavitation effect of ultrasound has been proposed. This idea might lead to the development of new technologies for cleaning pipe interiors. Consequently, this study investigated the use of ultrasound to clean pipes embedded in concrete. In this study, devices that generated ultrasonic waves with various frequencies and directions were prepared. After preparing arbitrarily contaminated pipes, the appropriate frequency, output strength, and output direction for each foreign substance were determined through repeated experiments. The results of this experiment could provide important information for future methods of cleaning the interior of ondol piping systems.

  • PDF

The Effects of cathodic protection on fracture toughness of buried gas pipeline (매설가스배관의 음극방식이 배관의 파괴인성에 미치는 영향)

  • Kim, Cheol-Man;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.573-578
    • /
    • 2001
  • For the corrosion protect ion of the natural gas transmission pipelines, two methods are used, cathodic protection and coating technique. In the case of cathodic protection, defects are embrittled by occurring hydrogen at the crack tip or material surface. It is however very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed CTOD test ing with varying test conditions, such as the potential and current density. The CTOD of the base steel and weld metal showed a strong dependence of the test conditions. The CTOD decreased with increasing cathodic potential and current density. The morphology of the fracture surface showed quasi-cleavage. Hydrogen introduced fractures, caused by cathodic overprotection.

  • PDF