• Title/Summary/Keyword: buried facilities

Search Result 84, Processing Time 0.028 seconds

A Simulation of the Detection of Buried Facilities using FDTD (FDTD를 이용한 매설 설비의 탐지 시뮬레이션)

  • Lee, Woo-Chan;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.2
    • /
    • pp.68-73
    • /
    • 2011
  • In Ground Penetrating Radar (GPR) for buried object detection, it is important to identify a buried target because removal of an unwanted target requires as much time and effort as does a wanted target. For a simulation of the target identification, the FDTD (Finite Difference Time Domain) and PML (Perfectly Matched Layer) techniques are widely used. Simulation results vary depending on the type of the buried object and the position of the source. As a result, this paper illustrates the range (time) profile of the five types of facilities including PEC (Perfect Electric Conductor) rectangular box and pipes, and shows the comparison of the range profile of the buried facilities.

  • PDF

Exploration of Buried Facilities by GPR (Ground Penetrating Radar를 사용한 지하설비 탐사에 관한 연구)

  • Shon, Su-Goog;Jeon, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.30-33
    • /
    • 2001
  • This paper discusses the system design of a synthetic aperture radar system based on a pulse-echo radar. The design consists of an ultra-wide bandwidth antenna, an amplitude modulation, timing stabilities, and high speed a/d conversions with an equivalent-time sampling. Experiment results show that GPR(Ground Penetrating Radar) can be used to explore buried electric facilities.

  • PDF

An Evaluation of EOCS Regarding Safety Management Effects on Buried Gas Pipelines and Convenience of the Excavators and the Operators of Gas Companies

  • Ryon, Young-Don;Chae, Chung-Keun;Bang, Hyo-Jung;Yoon, Young-Kee;Lee, Su-Kyung
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.43-48
    • /
    • 2007
  • We introduced the Excavation One Call System (EOCS) as a pilot system, in Seoul, Korea. The system utilizes the phone and internet to transfer information about digging underground and buried gas pipelines, although currently written forms are used in accordance with the City Gas Business Law. After one year, we evaluated the business model by surveying the excavators and the operators of the gas companies. This paper shows that the EOCS was more effective in preventing the buried gas pipelines from being damaged than the existing method that has to use due form. It also shows that the EOCS was more convenient and cost efficient than the present policies in place. We come to the conclusion that the EOCS should be extended nationwide and gradually include other subsurface facilities.

A Study on the Secular Change Characteristics of Grounding Systems (접지계의 경년변화 특성에 관한 연구)

  • Kim Jae-Yee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.224-226
    • /
    • 2005
  • In this paper, the secular changes of buried grounding electrodes was investigated; the electrodes are such facilities as grounding grid, grounding connector, grounding terminal and grounding rod etc.. The corrosiveness of removed substation grounding electrodes after commercial operation more than 50 years was measured and its conductivity deterioration trend was analyzed. The measuring results using three experimental methods were compared, finally the consideration for safe and economic grounding design were shown. As the result, it shows the maintenance necessity of grounding systems.

Risk Assessment Program of underground buried Pipeline Development (지하매설배관의 위험성평가 프로그램 개발)

  • Kim Tae Wook;Sung Jun Sik;Cho Yong Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.2 s.10
    • /
    • pp.37-45
    • /
    • 2000
  • The underground buried pipelines of Natural gas are relatively safer than any other pipelines of chemical plants, because Natural gas is non-corrosive fluid. But Natural gas is supplied normally the downtown area. So, it may be a disaster because of corrosion which is caused interference facilities, environment and third party accident which is caused facilities construction. Especially, it is very difficult to find out and inspect damages of pipeline because of buried pipelines. Therefore this paper approached to select and manage risk region pipelines according to introduction of underground buried pipeline's risk concept. Risk was indicated three parts - corrosion factor, design and construction factor, maintence and management factor - in this paper, Therefore qualitive risk of pipelines showed score as quantitative number. Also it was thought to be helpful in confidence and safety management that the concept of key index and failure supplementation measures to cost introduces this program. We developed this risk assessment program using visual basic tool and interfaced GIS.

  • PDF

A Study on the Calculation of Transmission Current-Carrying Capacity by Horizontal Arrangement Type in the Installation Methods of 154kV XLPE 600㎟ Power Cable Buried Ducts in Ground (154kV XLPE 600㎟ 지중관로 수평배열 형태별 허용전류용량 산정에 관한 연구)

  • Kim, Se-Dong;Yoo, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.53-58
    • /
    • 2016
  • The underground transmission lines which have been built to expand the suppling facilities will be continuously accompanying with high growth of the increase of power demand in the metropolitan area in recent years. So, it is necessary to maximize the ability and reliability of power supply with the current-carrying capability of the underground transmission lines. Design criteria of KEPCO is to be presented and used frequently. But it has to be studied about the installation methods of power cable buried in ground. In this study, we used the program for calculating the current-carrying capability of underground transmission power cables. We estimated the maximum permissible current values by the horizontal arrangement in the installation methods of power cable(154kV XLPE $600mm^2$) buried ducts in ground. To see the general tendency of the analysis, we researched a statistical analysis with such parameters as the maximum permissible current values. Through the regression analysis, we analyze the most highly values of the maximum permissible current on the Ra type duct arrangement.

Cathodic Protection of Onshore Buried Pipelines Considering Economic Feasibility and Maintenance

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.158-168
    • /
    • 2016
  • During the installation of crude oil or gas pipelines, which pass through onshore buried pipelines or onshore pipeline from subsea pipeline to onshore plant, countermeasures need to be implemented so as to ensure a sufficient design life by protecting the steel pipes against corrosion. This can be achieved through impressed current cathodic protection method for onshore pipelines and through galvanic sacrificial anode corrosion protection method for offshore pipelines. In particular, in the case of impressed current cathodic protection, isolation joint flanges should be used. However, this makes maintenance control difficult with its installation having a negative impact on price. Therefore, in this study, the most suitable methodology for onshore pipeline protection between galvanic sacrificial anode corrosion protection and impressed current cathodic protection method will be introduced. In oil and gas transportation facilities, the media can be carried to the end users via onshore buried and/or offshore pipeline. It is imperative for the field operators, pipeline engineers, and designers to be corrosion conscious as the pipelines would undergo material degradations due to corrosion. The mitigation can be achieved with the introduction of an impressed current cathodic protection method for onshore buried pipelines and a galvanic sacrificial anode corrosion protection method for offshore pipelines. In the case of impressed current cathodic protection, isolation joint flanges should be used to discontinuity. However, this makes maintenance control to be difficult when its installation has a negative impact on the price. In this study, the most suitable corrosion protection technique between galvanic sacrificial anode corrosion protection and impressed current cathodic protection is introduced for (economic life of) onshore buried pipeline.

Buckling of Buriend Pipelines due to Seismic Waves (지진파에 의한 매설관로의 좌굴)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.109-118
    • /
    • 1999
  • Lifeline system such as oil or gas pipelines and water supply facilities are vulneratble to seismic damages because they are widely exposed to ground failures. Most seismic design criteria of buried pipelines are based on the notion that the longitudinal compressive strain and therefore buckling controls the design. Buckling analysis of buried pipelines subjected to seismic loading is performed by considering the seismic load as the sinusoidally distributed compressive load on the beam on elastic foundation in contrast to existing studies where the buckling load is treated as an end load on the beam column, An approximated analytical solution is obtained by the energy method and its validity is confirmed by the linearized finite element buckling analysis. The results show the beam mode buckling because longitudinal strains at the buckling loads are substantially lower than the strain at the onset of local buckling.

  • PDF

Underground facilities Detecting Accuracy (지하매설물측량의 정확도)

  • Lee, Jae-Kee;Cho, Jae-Ho;Lee, Jae-Dong;Park, Kyung-Yeol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.1 s.9
    • /
    • pp.139-145
    • /
    • 1997
  • Rapid development of city has made a lots of urban facilities buried under ground, therefore how to bury underground facilities and how to operate them becomes more and more important. However, due to shortage of composite operation data for burying the facilities under ground, a lots of individual and nation's properties have been destroted and even many people killed. under the circumstances, we need to detect the facilities in detail and in accuracy and we can surgest for underground facilities detecting accuracy as below.

  • PDF

Introduction to Image Processing Technology for Precise Positioning of Underground Buried Lifelines (영상정보 기반 지하매설관 정밀 위치조사 기술 소개)

  • Ryu, Byunghyun;Cheon, Jangwoo;Lee, Chulhee;Lee, Impyeong;Lee, Jangguen;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.51-57
    • /
    • 2021
  • Underground lifelines such as water supply/sewer pipe, power cable and gas pipe are indispensable facilities to the life of urban society. These lifelines have been constructed long time ago and buried positioning information is not precisely recorded. Moreover, they have been concentrated on the narrow area and are complicatedly entangled in 3-dimension. In the fourth industrial revolution, a 3-dimensional visualization for underground lifelines is strongly required, and a database (D/B) with precise positioning information should be preceded. In this study, image processing technology for precise positioning of underground buried lifelines is introduced, which is able to build the database more accurately, efficiently and practically.