• Title/Summary/Keyword: buoyancy module

Search Result 15, Processing Time 0.024 seconds

Buoyancy Engine Independent Test Module Test in the Ocean Engineering Basin (부력엔진 독립시험 모듈 해양공학수조 시험)

  • Chong-Moo Lee;Hyung-Woo Kim;Tae-Hwan Joung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1155-1162
    • /
    • 2023
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO), which is developing the core technology for the buoyancy engine of underwater gliders, has developed a test module that can vertically ascend and descend with a buoyancy engine to verify the performance of the developed buoyancy engine. The independent test module was tested in a 15 metre deep pit in the Ocean Engineering Basin to verify its ability to ascend and descend. In order to test at a shallower depth than the real sea, it was necessary to know the negative buoyancy value during descent and the time at which the buoyancy engine would be activated. To do this, we solved the equation of motion in the vertical direction to obtain these values and applied them to the tank test. To validate the usefulness of solving the equation, we also compared the depth of descent over time measured in the test with the results calculated from the solution.

Buoyancy Engine Independent Test Module Test in the the Deep Ocean Engineering Basin and at Sea (부력엔진 독립시험 모듈 심해공학수조 시험과 실해역 시험)

  • Chong-Moo Lee;Hyungwoo Kim;Heung Hyun Lim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.629-634
    • /
    • 2024
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO) has developed a test module that can vertically ascend and descend with a buoyancy engine to verify the performance of the developed buoyancy engine. The independent test module has been tested in the Ocean Engineering Basin(C.M.Lee et al., 2023). After that, more tests were performed in the Deep Ocean Engineering Basin and at sea. In the 50-meter depth pit test of the Deep Ocean Engineering Basin, there were no problems with the ascent and descent operations, but the buoyancy engine was not properly maintained due to various problems in the independent test module, resulting in a difference between the calculated results using the solution of the equations of motion and the actual measurement results. The East Sea test was conducted at a depth of approximately 110 meters north-east of Pohang, with a dive to 100 meters. The difference between the pressure sensor value and the calculated value was observed, but after checking the results of the underwater position tracking device(USBL, Ultra Short Base Line system), it was estimated that the difference was caused by the influence of the current.

A Study on the Simulation-based Design for Optimum Arrangement of Buoyancy Modules in Marine Riser System (해양 라이저의 부력재 최적 배치를 위한 시뮬레이션 기반 설계 기법에 관한 연구)

  • Oh, Jae-Won;Park, Sanghyun;Min, Cheon-Hong;Cho, Su-Gil;Hong, Sup;Bae, Dae-Sung;Kim, Hyung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • This paper reports a simulation-based design method for the optimized arrangement design of buoyancy modules in a marine riser system. A buoyancy module is used for the safe operation and structural stability of the riser. Engineers design buoyancy modules based on experience and experimental data. However, they are difficult to design because of the difficulty of conducting real sea experiments and quantifying the data. Therefore, a simulation-based design method is needed to tackle this problem. In this study, we developed a simulation-based design algorithm using a multi-body dynamic simulation and genetic algorithm to perform optimization arrangement design of a buoyancy module. The design results are discussed in this paper.

A Comparative Study of Subsea Pipeline Global Buckling Control Method (해저 파이프라인의 전체 좌굴 제어 방법 비교)

  • Kim, Koo;Kim, Do-Kyun;Choi, Han-Suk;Park, Kyu-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • Global buckling is a bending of pipeline and it occurs when the stability of pipeline is distributed by excessive axial force. Subesea pipeline is subjected to axial force induced by temperature and pressure from well and resulting phenomena should be controlled in appropriate manner. Global buckling of subsea pipeline is still ongoing research subject and is studied various organization. In this study, various control methods such as buoyancy module, sleeper, and snake lay for global buckling of subsea pipeline were numerically investigated with various design parameters. From the numerical simulation results, the global buckling control method using sleepers shows better results than buoyancy module and snake lay control methods in the sense of combined stress after buckling. Furthermore, the global buckling of full scale pipeline of 80km with uneven seabed profile were successfully managed when the sleeper was installed.

Analytical Study on Buoyancy Preflexion Effects on Structural Performance of Concrete Floating Structure (부력 프리플랙션 효과가 콘크리트 부유구조체의 구조성능에 미치는 영향에 대한 해석적 연구)

  • Lee, Du-Ho;Jeong, Youn-Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.75-83
    • /
    • 2012
  • In this study, an analytical studies were carried out for the buoyancy preflexion method to improve structural performance of concrete floating structures. The buoyancy preflexion means that the preflexion effects were induced to the floating structure due to the difference in buoyancy between the pontoon modules composing the floating structures. In order to verify the buoyancy preflexion effects, an analytical studies were carried out for the floating structures. The size and dimensions of FE model were determined through the structural design process. The parameter of this analytical study was length ratios of central module part, which induces buoyancy preflexion effects, to the total length. The analysis results were pre-compression on the bottom concrete slab and displacement of freeboard due to buoyancy preflexion effects. These results were processed according to the loading step, buoyancy preflexion loads on the bottom and live loads on the topside. Then, the buoyancy preflexion effects on structural performance was analyzed. As the results of this study, it was found that the buoyancy preflexion significantly influence on structural performance of floating structures. According to the length ratio, the buoyancy preflexion effects have a tendency of parabolic form and maximized at the length ratio of 40~60%. The buoyancy preflexion method is simple in principle and easy in application. Also, it can effectively induce pre-compression on the bottom concrete slab. Therefore, it can be concluded that the buoyancy preflexion method contribute to the improvement of structural performance and decreasing of the cross-sectional depth of floating structures.

Arrangement Plan of Buoyancy Modules for the Stable Operation of the Flexible Riser in a Deep-Seabed Mining System (심해저 채광 시스템에서 유연관의 안정적인 운용을 위한 부력재 배치 설계)

  • Oh, Jae-Won;Min, Cheon-Hong;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Lim, Jun-Hyun;Kim, Hyung-Woo
    • Ocean and Polar Research
    • /
    • v.37 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • This paper focuses on the efficient arrangement plan of buoyancy modules, which plan is used to secure the safe operation and structural stability of a marine riser. The marine riser is connected between a vessel and seabed devices. The movement of the vessel and the seabed devices are affected by the motion of the riser. The riser of a deep-seabed integrated mining system exerts a strong influence on the healthy transfer of minerals. So, buoyancy modules must be equipped to compensate for the problem which is the structure stability and the dynamic motion. Installation locations and quantities of the buoyancy modules are determined by real sea experiments. But this is not easy to do because in real sea experimental conditions the cost is expensive as well as being, time-consuming and dangerous. Therefore, the locations and quantities should be determined by numerical simulation. This method is called simulation-based design. The dynamic analysis models of the riser and the buoyancy modules are built into the commercial software of DAFUL.

A study on the mixed-convection heat transfer characteristics of a simulated module on the bottom in the inclined channel (경사진 채널밑면에 탑재된 모사모듈의 혼합대류열전달 특성 연구)

  • Ryu, Kap-Jong;Lee, Jin-Ho;Jang, Jun-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.433-439
    • /
    • 2001
  • An experimental study was carried out on the characteristics of the mixed-convection heat transfer from a protruding heat source module which had uniform heat flux and was located on a flat plate in the inclined channel. The effects of the inclined channel(${\varphi}=0{\sim}90^{\circ}$) was studied for the input power($Q=3,\;7W$) and inlet air velocities($V_{i}=0.1{\sim}0.9m/s$). Experimental results indicate that the input power was most effective parameter on the temperature differences between inlet air and module. The effects of the inclined angle was negligible when the inlet velocities were above 0.5m/s and 0.9m/s at Q = 3W, 7W respectively. As the inclined angle of the channel increases, the temperatures of the module are decreased. So we obtained the best condition on the adiabatic board at the vertical channel.

  • PDF

Design and estimation of a sensing attitude algorithm for AUV self-rescue system

  • Yang, Yi-Ting;Shen, Sheng-Chih
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.157-177
    • /
    • 2017
  • This research is based on the concept of safety airbag to design a self-rescue system for the autonomous underwater vehicle (AUV) using micro inertial sensing module. To reduce the possibility of losing the underwater vehicle and the difficulty of searching and rescuing, when the AUV self-rescue system (ASRS) detects that the AUV is crashing or encountering a serious collision, it can pump carbon dioxide into the airbag immediately to make the vehicle surface. ASRS consists of 10-DOF sensing module, sensing attitude algorithm and air-pumping mechanism. The attitude sensing modules are a nine-axis micro-inertial sensor and a barometer. The sensing attitude algorithm is designed to estimate failure attitude of AUV properly using sensor calibration and extended Kalman filter (SCEKF), feature extraction and backpropagation network (BPN) classify. SCEKF is proposed to be used subsequently to calibrate and fuse the data from the micro-inertial sensors. Feature extraction and BPN training algorithms for classification are used to determine the activity malfunction of AUV. When the accident of AUV occurred, the ASRS will immediately be initiated; the airbag is soon filled, and the AUV will surface due to the buoyancy. In the future, ASRS will be developed successfully to solve the problems such as the high losing rate and the high difficulty of the rescuing mission of AUV.

3D Printed Water Strider Robot with Environmental Monitoring (환경모니터링이 가능한 3D 프린팅 소금쟁이 로봇)

  • Shim, Ga-hyun;Lee, Kihak;Chun, Kyunghan;Cho, Chanseob;Kim, Bonghwan
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.407-413
    • /
    • 2019
  • Using 3D printing technology, we created a biomimetic water strider robot that can monitor environments. We found ways to increase the bearing capacity of the fluid-driven water strider robot by conducting experiments then comparing with more stable robots. The controller of the robot is based on Arduino, and can be controlled wirelessly with a Bluetooth module. The speed of the robot is 7.37 cm/s, and the bearing capacity is 29 g. A lithium polymer battery that can be charged with a solar cell was used as a power source, and both the charging and driving times were also explored.

Numerical Study on Estimation of Static Configuration of Steel Lazy Wave Riser Using Dynamic Relaxation Method (동적이완법을 이용한 Steel Lazy Wave Riser의 정적형상 추정에 관한 수치해석적 연구)

  • Oh, Seunghoon;Jung, Jae-Hwan;Park, Byeongwon;Kwon, Yong-Ju;Jung, Dongho
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.466-473
    • /
    • 2018
  • This paper presents an estimation method for the static configuration of a steel lazy wave riser (SLWR) using the dynamic relaxation method applied to estimate the configuration of structures with strong geometric non-linearity. The lumped mass model is introduced to reflect the flexible structural characteristics of the riser. In the lumped mass model, the tensions, shear forces, buoyancy, self-weights, and seabed reaction forces at nodal points are considered in order to find the static configuration of the SLWR. The dynamic relaxation method using a viscous damping formulation is applied to the static configuration analysis. Fictitious masses are defined at nodal points using the sum of the largest direct stiffness values of nodal points to ensure the numerical stability. Various case studies were performed according to the bending stiffness and size of the buoyancy module using the dynamic relaxation method. OrcaFlex was employed to validate the accuracy of the developed numerical method.