• Title/Summary/Keyword: buoyancy method

Search Result 200, Processing Time 0.03 seconds

Numerical Analysis of Peak Uplift Resistance for Pipelines Buried In Sand

  • Kwon, Dae-Hean;Seo, Young-Kyo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.158-164
    • /
    • 2017
  • A pipeline is one of the most important structures for the transportation of fluids such as oil, natural gas, and wastewater. The uplift behavior of pipelines caused by earthquakes and buoyancy is one of the reasons for the failure of pipelines. The objective of this study is to examine the peak uplift resistance using parametric studies with numerical modeling of PLAXIS 3D Tunnel. The effects of burial depth and pipe diameter on the uplift resistance of loose and dense sand were first examined. Subsequently, the effects of the length of geogrid layers and the number of geogrid layers were examined to prevent uplift behavior.

Analysis on Heat Supply Piping Network for Apartment House (아파트의 온수공급배관망해석)

  • 박윤철;황광일
    • Journal of the Korean housing association
    • /
    • v.13 no.6
    • /
    • pp.89-99
    • /
    • 2002
  • The purpose of this research is to analyze the characteristics of flow rate distribution in hot-water piping networks in the apartment building. A 14-story apartment house was selected as a sample building and analyzed numerically by Hardy-Cross method. Two different piping networks, one has three vertical zones and the other of a single zone with automatic balancing valves, were compared. Some of research results are as follows; As the temperature of supply hot-water increases, the flow rate of it does by buoyancy effect, but this effect is not found in the piping network with automatic balancing valves. Non-uniformity in hot-water flow distributions to all stories in the piping system of single vertical zone can be completely reformed by the installation of either manually operated or automatic balancing valves in every story.

Large eddy simulation of turbulent boundary layer effects on stratified fluids in a rotating conical container

  • Lee, Sang-Ki;Bae, Jun-Hong;Hwang, Eyl-Seon;M. Sadasivam
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.75-80
    • /
    • 2000
  • We revisit the arrested Ekman boundary layer problem, using a fully non-linear numerical model with the subgrid dissipation modeled by the large eddy simulation method (LES). The main objective of this study is to find out whether the dynamic balance of the arrested Ekman boundary layer explained by MacCready and Rhines (1991) is valid for high Reynolds number. The model solution indicates that for high Reynolds number and low Richardson number flows, the density anomaly diffusion by near-wall turbulent action may become intense enough to homogenize completely the density structure within the boundary layer, in the direction perpendicular to the sloping wall. Then the buoyancy effect becomes negligible allowing a near-equilibrium Ekman boundary layer flow to persist for a long period.

  • PDF

Optimization of inlet velocity profile for uniform epitaxial growth (균일한 에피층 성장을 위한 입구 유속분포 최적화)

  • Cho W. K.;Choi D. H.;Kim M.-U.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.121-126
    • /
    • 1998
  • A numerical optimization procedure is developed to find the inlet velocity profile that yields the most uniform epitaxial layer in a vertical MOCVD reactor. It involves the solution of fully elliptic equations of motion, temperature, and concentration; the finite volume method based on SIMPLE algorithm has been adopted to solve the Navier-Stokes equations. The overall optimization process is highly nonlinear and has been efficiently treated by the sequential linear programming technique that breaks the non-linear problem into a series of linear ones. The optimal profile approximated by a 6th-degree Chebyshev polynomial is very successful in reducing the spatial non-uniformity of the growth rate. The optimization is particularly effective to the high Reynolds number flow. It is also found that a properly constructed inlet velocity profile can suppress the buoyancy driven secondary flow and improve the growth-rate uniformity.

  • PDF

A Study on the Heat Transfer Characteristics of Magnetic Fluids in Concentric Double Pipe Annuli (이중원관내 자성유체의 열전달 특성에 관한 연구)

  • Park, J.W.;Park, G.T.;Seo, L.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1657-1662
    • /
    • 2003
  • In this study, to research characteristics of heat flow of magnetic fluid, it's studied about numerical and experimental method of natural convections change and characteristics of heat transfer in Concentric double pipe annuli as analysis model. In the result, natural convection of magnetic fluid is controlled by direction and strength of the impressed magnetic field. Especially, according to average Nusselt number, heat transfer is the smallest on the balancing point between body force and buoyancy.

  • PDF

Heat Transfer Analysis of Infrared Reflow Soldering Process for Attaching Electronic Components to Printed Circuit Boards (전자부품의 인쇄회로기판 부착시 적외선 Reflow Soldering과정 열전달 해석)

  • Son, Young-Seok
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.105-115
    • /
    • 1997
  • A numerical study is performed to predict the thermal response of a detailed card assembly during infrared reflow soldering. The card assembly is exposed to discontinuous infrared panel heater temperature distributions and high radiative/convective heating and cooling rates at the inlet and exit of the oven. The convective, radiative and conduction heat transfer within the reflow oven as well as within the card assembly are simulated and the predictions illustrate the detailed thermal responses. The predictions show that mixed convection plays an important role with relatively high frequency effects attributed to buoyancy forces, however the thermal response of the card assembly is dominated by radiation. The predictions of the detailed card assembly thermal response can be used to select the oven operating conditions to ensure proper solder melting and minimization of thermally induced card assembly tresses and warpage.

  • PDF

HEAT AND MASS TRANSFER EFFECTS ON MHD NATURAL CONVECTION FLOW PAST AN INFINITE INCLINED PLATE WITH RAMPED TEMPERATURE

  • SHERI, SIVA REDDY;SURAM, ANJAN KUMAR;MODULGUA, PRASANTHI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.355-374
    • /
    • 2016
  • This work is devoted to investigate heat and mass transfer effects on MHD natural convection flow past an inclined plate with ramped temperature numerically. The dimensionless governing equations for this investigation are solved by using finite element method. The effects of angle inclination, buoyancy ratio parameter, permeability parameter, magnetic parameter, Prandtl number, heat generation, thermal radiation, Eckert number, Schmidt number, chemical reaction parameter and time on velocity, temperature and concentration fields are studied and presented with the aid of figures. The effects of the pertinent parameters on skin friction, rate of heat transfer and mass transfer coefficients are presented in tabular form. The numerical results are compared graphically with previously published result as special case of the present investigation and results found to be in good agreement.

Vertical arrangement of coils for efficient cargo tank heating

  • Magazinovic, Gojko
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.662-670
    • /
    • 2019
  • Tanker cargo tanks are equipped with the means of raising and maintaining the cargo discharge temperature to a suitable level. In this paper, a new heating coil design is proposed and analyzed. Contrary to conventional designs, wherein the heating coils are evenly distributed over the tank bottom, the proposed design arranges the heating coils in the central part of the tank bottom, in a vertical direction. Due to the intensive cargo circulation generated, a forced convection is superimposed on a buoyancy-driven natural convection, providing a more efficient mixed convection heat transfer mechanism. Numerical simulations performed by using a finite volume method show that in the case of 7-bar steam Bunker C heavy fuel oil heating, a five-hour circulation phase average heat transfer coefficient equals 199.2 W/m2K. This result might be taken as an impetus for the more thorough experimental examination.

Impact Behavior Analysis of Mechanical Monoleaflet Heart Valve Prostheses in the Opening Phase

  • Cheon, Gill-Jeong;Chandran, K.B.
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.235-244
    • /
    • 1992
  • In this paper, fluttering behavior of mechanical monoleaflet tilting disc heart valve prostheses during the opening phase was analyzed taking into consideration the impact between the occluder and the guiding strut at the fully open position. The motion of the valve occluder was modeled as a rotating system, and equations were derived by employing the moment equilibrium principle. Forces due to lift, drag, gravity and buoyancy were considered as external forces acting on the occluder. The 4th order Runge-Kutta method was used to solve the governing equations. The results iimonstrated that the occludes reaches steady equilibrium position only after damped vibration. Fluttering frequency varies as a function of time after opening and is in the range of 8-84 Hz. Valve opening appears to be affected by the orientation of the valve relative to gravitational force. The opening velocities are in the range of 0.65-1.42m/sec and the dynamic loads by impact of the occludes and the strut are in the range of 90-190 N.

  • PDF

Dynamic Behavior Analysis of Mechanical Bileaflet Heart Valve Prosthesis (기계식 이엽심장밸브의 동적거동 해석)

  • 천길정
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.149-156
    • /
    • 1991
  • In this paper, fluttering behavior of mechanical bileaflet heart valve prosthesis was analyzed taking into consideration of the impact between valve plate and stopper Vibration system of the valve was modeled as a rotating system, and equations are induced by moment equilibrium equations. Lift force, drag force, gravity and buoyancy were considered as external forces acting on the valve plate/ The 4th order Runge-Kutta method was used to solve the equations. Valve plate does not come to the static equilibrium position at a stretch, but come to that position after under damping vibration. Damping ratio increases as the cardiac optput increases, and the mean damping ratio is in the range of 0.16~40.25. Fluttering frequency does not have any specific value, but varies as a function of time. It is in the range of 10~40Hz. Valve opening appears to be affected by the orientation of the of the valve relative to gravitational forces.

  • PDF