• Title/Summary/Keyword: bulk temperature

Search Result 1,307, Processing Time 0.026 seconds

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.

Fine Root Biomass in Pinus densiflora Stands using Soil Core Sampling and Minirhizotrons (토양 코어 및 미니라이조트론을 이용한 소나무 임분의 세근 바이오매스 연구)

  • Han, Seung Hyun;Yoon, Tae Kyung;Han, Saerom;Yun, Soon Jin;Lee, Sun Jeoung;Kim, Seoungjun;Chang, Hanna;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • Fine root distribution was investigated in Pinus densiflora stands using soil core sampling and minirhizotrons, and conversion factors and regression equations were developed for converting minirhizotron data into fine root biomass. Fine root biomass was measured by soil core sampling from October, 2012 to September, 2013 once a month except for the winter, and surface area of fine roots was estimated by minirhizotrons from May to August, 2013 once a month. Fine root biomass and surface area were significantly higher in the upper soil layers than in the lower soil layers. Fine root biomass showed seasonal patterns; the mean fine root biomass ($kg{\cdot}ha^{-1}$) in summer (3,762.4) and spring (3,398.0) was significantly higher than that in autumn (2,551.6). Vertical and seasonal patterns of fine root biomass might be related to the soil bulk density, nutrient content and temperature with soil depth, and seasonal changes of soil and air temperature. Conversion factors (CF) between fine root surface area from minirhizotron data and fine root biomass from soil core sampling were developed for the three soil depths. Then a linear regression equation was developed between the predicted fine root biomass using CF and the measured fine root biomass (y = 79.7 + 0.93x, $R^2=0.81$). We expect to estimate the long-term dynamics of fine roots using CF and regression equation for P. densiflora forests in Korea.

Alteration Zoning, Mineral Assemblage and Geochemistry of the Hydrothermal Clay Deposits Related to Cretaceous Felsic Magmatism in the Haenam Area, Southwest Korea (한국 서남부, 해남지역에서 백악기 산성마그마티즘에 관련된 열수점토광상의 누대분배, 광물조합의 지구화학적 연구)

  • Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.397-416
    • /
    • 1992
  • In the present study, three clay deposits, named the Seongsan, Ogmaesan and Haenam deposits, were investigated. The altered zones are recognized in the hydrothermally altered rocks of the clay deposits from the center of the alteration to the margin: Kaolin, Kaolin-Quartz, Quartz, Sericite and Chlorite zones in the Seongsan deposits; Quartz zone, Alunite zone, Kaolin zone, Sericite zone and Chlorite zone in the Ogmaesan deposits; Quartz zone, Pyrophyllite zone, Sericite zone and Chlorite zone in the Haenam deposits. These zones can be grouped into two types of alteration: Acidic alteration such as Pyrophyllite zone, Alunite zone, Quartz zone, Kaolin zone, Kaolin-Quartz zone and a part of Sericite zone; Propylitic alteration such as Chlorite zone and a part of Sericite zone. All clay deposits belong to high-sulfidation (acid-sulfate) system. The rocks of the acidic alterations are composed of pyrophyllite, alunite, kaolin minerals, sericite, quartz and pyrite. On the basis of bulk chemical compositions, it was found that some components such as $SiO_2$, $TiO_2$, $Fe_2O_3$, FeO, MgO, CaO, $K_2O$ and $Na_2O$ were mobilized considerably from the original rocks. The mobility of these major elements is related to, and controls, mineral assemblages in each altered zone. Polytypes of sericite are determined as $2M_1$ and 1M by X-ray diffraction method. The amount of $2M_1$ is nearly equal to that of 1M in the Seongsan deposits whereas $2M_1$ is less and higher than that of 1M in the Ogmaesan and the Haenam deposits. These facts indicate that formation temperature of sericite is relatively high in the Haenam deposits, moderate in the Seongsan deposits, and low in the Ogmaesan deposits. The ratios of Na/(K+Na) for alunite in the Ogmaesan deposits determined by electron microprobe analyzer (EPMA) are higher than those in the Seongsan deposits. Thus, the alunite of the Ogmaesan deposits must have been formed from the solutions with relatively high aqueous Na/(K+Na) ratios and low pH at a high temperature rather than that of the Seongsan deposits. From all data, it is clarified that alunite is hypogene in origin, and has been formed by oxidation of hydrogen sulfide in the steam-heated environment, and that alunite has been produced by the spectacular solfataric alteration observed at the surface of some present-day hydrothermal systems.

  • PDF

Study on Effect of Convection Current Aeration System on Mixing Characteristics and Water Quality of Reservoir (대류식 순환장치의 저수지수체 유동특성 및 수질영향)

  • Lee, Yo-Sang;Lee, Kwang-Man;Koh, Deok-Koo;Yum, Kyung-Taek
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.85-94
    • /
    • 2009
  • This study examines the operational effectiveness of a Convection Current Aeration System (CCAS) in reservoir. CCAS was run from June, 2008 when the thermocline begun forming in the reservoir. This paper reviews the influence of stratification, dissolved oxygen dynamics and temperature in the lake's natural state from June to October 2008. The survey was done on a week basis. Upwelling flow effects a radius of $7{\sim}10m$ at a surface directly and was irrelevant to the strength of thermocline. On the other hand, it was affected the number of working days, and strength of thermocline at vertical profiles of the reservoir. Longer CCAS run, the deeper was the vertical direct flow area. However it didn't break the thermocline during summer season of 2008. The operating efficiency of the CCAS in the reservoir depends on hydraulics and meteological conditions. Computational Fluid Dynamics (CFD) is a very useful tool for evaluating the operating efficiency of fluid dynamics. The geometry for CFD simulation consists of a cylindrical vessel 25 m radius and 40 m height. The CCAS is located in center of domain. The non-uniform tetrahedral meshes had a bulk of the geometry. The meshes ranged from the coarse to the very fine. This is attributed to the cold water flowing into the downcomer and rising, creating a horizontal flow to the top of the CCAS. The result of CFD demonstrate a closer agreement with surveyed data for temperature and flow velocity. Theoretical dispersion volume were calculated at 8m depth, 120 m diameter working for 30 days and 10 m depth, 130 m diameter working for 50 days.

Soil Characteristic of Plow and Compaction Layer in Fluvio-marine Deposit Paddy Soil (하해혼성 충적층 논토양 작토층과 경반층의 토양특성)

  • Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.364-370
    • /
    • 2009
  • This study was conducted to survey, analyze on the compaction layer and the plow layer at Jeonbug and Jisan series paddy soil, which is the representative soil in fluvio-marine and local alluvium, respectively. The depths of surface soil were 12.6 and 12.7 cm in Jeonbug and Jisan series, respectively. A plowing depth was 10.5 cm. The properties of compaction layer in two soil series were as follows. The hardness were $14.7kg\;cm^{-2}(25.3mm)$ and $8.7kg\;cm^{-2}(22.1mm)$ in Jeonbug and Jisan series, respectively. The thickness were 22.3 cm and 17.8 cm in Jeonbug and Jisan series, respectively. The depth of soil compaction, which means depth from surface, were 15 and 20 cm in Jeonbug and Jisan series, respectively. The relationship between the hardness of compaction layer and the depth of surface soil showed negative correlation, however relationship between the hardness and the thickness of compaction layer showed positive correlation. Soil temperature was lower in compaction layer than in plow layer. This temperature differences between compaction layer and plow layer were from 1.0 to $2.5^{\circ}C$ in Jeonbug series and from 0.7 to 2.1 in Jisan series. The soil physical properties of compaction layer were higher in bulk density and solid phase and lower in porosity and gaseous phase than those of plow layer in all soil series. The soil chemical properties of compaction layer were higher in pH, content of available silicate, exchangeable calcium and magnesium but lower in total nitrogen, content of organic matter and available phosphate than those of plow layer in all soil series. Cation exchangeable capacity and content of exchangeable potassium were similar between compaction layer and plow layer in Jeonbug series, however, in Jisan series these were lower in compaction layer than in plow layer. Elution amount of inorganic nitrogen were lower in compaction layer than in plow layer in all soil series. The content of soluble Fe and Mn were plenty in compaction layer compared with plow layer and these tendency was apparent in Jeonbug series. The water depth decrease were fast until the latter part of June, and were slow as $1{\sim}3mm\;day^{-1}$ for July and August, and were fast again from september. Rice roots distributions as each soil series and tillage method were 25 cm at rotary plowing in Jeonbug series, 30 cm at deep plowing in Jeonbug series, and 20 cm at tillage in Jisan series. Dry weight per m2 at heading stage were much in order of deep plowing in Jeonbug series, rotary plowing in Jeonbug series, and tillage in Jisan series.

Environmental Changes after Timber Harvesting in (Mt.) Paekunsan (백운산(白雲山) 성숙활엽수림(成熟闊葉樹林) 개벌수확지(皆伐收穫地)에서 벌출직후(伐出直後)의 환경변화(環境變化))

  • Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.465-478
    • /
    • 1995
  • The objective of this study was to investigate the impacts of large-scale timber harvesting on the environment of a mature hardwood forest. To achieve the objective, the effects of harvesting on forest environmental factors were analyzed quantitatively using the field data measured in the study sites of Seoul National University Research Forests [(Mt.) Paekunsan] for two years(1993-1994) following timber harvesting. The field data include information on vegetation, soil mesofauna, physicochemical characteristics of soil, surface water runoff, water quality in the stream, and hillslope erosion. For comparison, field data for each environmental factor were collected in forest areas disturbed by logging and undisturbed, separately. The results of this study were as follows : The diversity of vegetational species increased in the harvested sites. However, the similarity index value of species between harvested and non-harvested sites was close to each other. Soil bulk density and soil hardness were increased after timber harvesting, respectively. The level of organic matter, total-N, avail $P_2O_5$, CEC($K^+$, $Na^+$, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$) in the harvested area were found decreased. While the population of Colembola spp., and Acari spp. among soil mesofauna in harvested sites increased by two to seven times compared to those of non-harvested sites during the first year, the rates of increment decreased in the second year. However, those members of soil mesofauna in harvested sites were still higher than those of non-harvested sites in the second year. The results of statistical analysis using the stepwise regression method indicated that the diversity of soil mesofauna were significantly affected by soil moisture, soil bulk density, $Mg^{{+}{+}}$, CEC, and soil temperature at soil depth of 5(0~10)cm in the order of importance. The amount of surface water runoff on harvested sites was larger than that of non-harvested sites by 28% in the first year and 24.5% in the second year after timber harvesting. The level of BOD, COD, and pH in the stream water on the harvested sites reached at the level of the domestic use for drinking in the first and second year after timber harvesting. Such heavy metals as Cd, Pb, Cu, and organic P were not found. Moreover, the level of eight factors of domestic use for drinking water designated by the Ministry of Health and Welfare of Korea were within the level of the first class in the quality of drinking water standard. The study also showed that the amount of hillslope erosion in harvested sites was 4.77 ton/ha/yr in the first year after timber harvesting. In the second year, the amount decreased rapidly to 1.0 ton/ha/yr. The impact of logging on hillslope erosion in the harvested sites was larger than that in non-harvested sites by seven times in the first year and two times in the second year. The above results indicate that the large-scale timber harvesting cause significant changes in the environmental factors. However, the results are based on only two-year field observation. We should take more field observation and analyses to increase understandings on the impacts of timber harvesting on environmental changes. With the understandings, we might be able to improve the technology of timber harvesting operations to reduce the environmental impacts of large-scale timber harvesting.

  • PDF

Taxonomical Classification and Genesis of Yongheung Series in Jeju Island (제주도 토양인 용흥통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.478-485
    • /
    • 2009
  • This study was conducted to reclassify Yongheung series based on the second edition of Soil Taxonomy and to discuss the formation of Yongheung series in Jeju Island. Morphological properties of typifying pedon of Yongheung series were investigated and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon contains 3.2~3.4% oxalate extractable (Al + 1/2 Fe), less than 85% phosphate retention, and higher bulk density than $0.90Mg\;m^{-3}$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 15 to 150 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol or Alfisol. The typifying pedon has 0.9 % or more organic carbon in the upper 15 cm of the argillic horizon and accordingly, can be classified as Humult. It has a clay distribution in which the percentage of clay does not decrese from its maximum amount by 20% or more within a depth of 150 cm from the mineral soil surface, and keys out as Palehumult. Also that meets the requirements of Typic Palehumult. That has 35 % or more clay at the particle-size control section and has mesic soil temperature regime. Yongheung series can be classified as fine, mixed, thermic family of Typic Palehumults, not as fine, mixed, thermic family of Typic Hapludalfs. Most soils distributed in the southern coastal areas in Jeju island which have a humid climate are developed as Andisols. But Yongheung series distributed in this areas and derived from mainly trachyte, trachytic andesite, and volcanic ash are developed as Ultisols.

Taxonomical Classification and Genesis of Donggui Series in Jeju Island (제주도 토양인 동귀통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Keun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol;Kang, Ho-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • This study was conducted to reclassify Donggui series based on the second edition of Soil Taxonomy and to discuss the formation of Donggui series in Jeju Island. Morphological properties of typifying pedon of Donggui series were investigated and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon has very dark grayish brown (10YR 3/2) silt loam A horizon (0~17 cm), gravelly very dark grayish brown (10YR 3/2) silt loam BA horizon (17~42 cm), gravelly very dark grayish brown (10YR 3/2) silty clay loam Bt1 horizon (43~80 cm), brown (7.5YR 4/6) silty clay Bt2 horizon (80~105 cm), and brown (10YR 5/4) silty clay Bt3 horizon (105~150 cm). It is developed in lava plain and are derived from basalt and pyroclastic materials. The typifying pedon contains 1.3~2.1% oxalate extractable (Al + 1/2 Fe), less than 85% phosphate retention, and higher bulk density than 0.90 $Mg/m^3$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 22 to 150 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol and Inceptisol. It has udic soil moisture regime, and can be classified as Udalf. Also that meets the requirements of Typic Hapludalf. It has 18-35% clay at the particle-size control section, and have thermic soil temperature regime. Therefore Donggui series can be classified as fine loamy, mixed, thermic family of Typic Hapludalfs, not as fine silty, mixed, thermic family of Dystric Eutrudepts.

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks (저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구)

  • Noh, Yoorae;Kim, Sang-Hyo;Choi, Sung-Uk;Park, Joonhong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.63-75
    • /
    • 2016
  • For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

Isolation and Identification of Flavonoids from Corn Silk (옥수수수염에 함유된 Flavonoids의 분리 및 동정)

  • Kim, Sun-Lim;Kim, Mi-Jung;Lee, Yu-Young;Jung, Gun-Ho;Son, Beom-Young;Lee, Jin-Seok;Kwon, Young-Up;Park, Yong-Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.435-444
    • /
    • 2014
  • This study was carried out to isolate and characterize the flavonoids present in corn silks. Maysin content in the unpollinated corn silks (Kwangpyeongok) showed its highest level at 3 days after silking, and decreased thereafter, while the content of open pollinated silks were consistently decreased after silking. This result indicates that the maysin content is considerably affected by the pollination of corn silk. Unpollinated corn silks were collected with excising, and ethanol employed to extract flavonoids at common temperature for 9 days. After extraction, chlorophyll, lipids etc. were removed with methylene chloride, then submitted to flash column cartridge ($150{\times}40mm$ i.d.) packed with a preparative $RP-C_{18}$ bulk packing material ($125{\AA}$, $55-105{\mu}m$), and monitored at 352 nm. Four fractions, fraction-I, -II, -III, and -IV, were isolated from ethanolic extract of corn silks. Absorption spectrum of fraction I showed its maximum intensity (${\lambda}_{max}$) at 327 nm and 239 nm, fraction-II showed its maximum intensity at 339 nm and 274 nm, fraction-III showed its maximum intensity at 345 nm and 277 nm, and fraction-IV showed its maximum intensity at 352 nm, 270 nm, 257 nm, respectively. On the baisis of ESI micro-TOF analysis, fraction-I was identified as chlorogenic acid (m/z 355, 3-(3,4-dihydroxycinnamoyl) quinic acid, $C_{16}H_{18}O_9$), fraction-II identified as a mixture of chlorogenic acid and luteolin 3'-methyl ether 7-glucuronosyl-($1{\rightarrow}2$)-glucuronide (m/z 653, $C_{28}H_{28}O_{18}$), fraction-III identified as a mixture of chlorogenic acid luteolin 7-O-neohesperidoside (m/z 595, $C_{27}H_{30}O_{15}$), and luteolin 3'-methyl ether 7-glucuronosyl-($1{\rightarrow}2$)-glucuronide, and fraction-IV identified as maysin (m/z 577, 2"-O-${\alpha}$-L-rhamnosyl-6-C-(6-deoxy-xylohexose-4-ulosyl)luteolin, $C_{27}H_{28}O_{14}$), respectively. From the ethanolic extract of corn silks, fraction-I was obtained about 35 mg/100 g F.W., fraction-II was about 48 mg/100 g F.W., fraction-III was about 46 mg/100 g F.W., and fraction-IV was about 138 mg/100 g F.W., respectively.