• Title/Summary/Keyword: bulk structure

Search Result 852, Processing Time 0.032 seconds

High Temperature Compressive Deformation Behavior of the Bulk Metallic Glass Zr-Ti-Cu-Ni-Be Alloy (벌크 비정질 Zr-Ti-Cu-Ni-Be 합금의 고온 압축 변형 특성)

  • 이광석;하태권;안상호;장영원
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.565-572
    • /
    • 2001
  • It is well known that a multicomponent $Zr_{4l.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ bulk metallic glass alloy shows good bulk glass forming ability due to its high resistance to crystallization in the undercooled liquid state. DSC and XRD have been performed to confirm the amorphous structure of the master alloy. To investigate the mechanical properties and deformation behavior of the bulk metallic $Zr_{4l.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy, a series of compression tests has been carried out at the temperatures ranging from $351^{\circ}C$ to $461^{\circ}C$at the various initial strain rates from $2{\times}10^4s^1$ to $2{\times}10^2s^1$. Three types of nominal stress-strain curves have been identified such as linear stress-strain relationship meaning fracture at maximum stress, plastic deformation including stress overshoot and steady-state flow, plastic deformation without stress overshoot depending on the strain rate and test temperature. Also DSC analysis for the compressed specimens was carried out to investigate the change of structure, thermal stability and crystallization behavior for the various test conditions.

  • PDF

Effects of Raw Materials for Papermaking and Physical Treatment on the Pore Structure and Paper Properties (제지 원료의 특성 및 물리적 처리가 종이의 기공 구조 및 물성에 미치는 영향)

  • Won, Jong-Myoung;Nam, Ki-Young;Chung, Soon-Ki
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.7-13
    • /
    • 2007
  • Effects of pulp type, refining and filler type on the pore characteristics and physical properties of paper were investigated. HwBKP, SwBKP and BCTMP are used to study the effect of pulp type in this study. The effects of each filler (PCC, GCC and talc) and the combination of PCC/GCC were also studied. Highest bulk, pore volume and light scattering are obtained from BCTMP and PCC. It was found that the pore size and pore volume are important in light scattering in paper structure. It was found that PCC was the most effective filler for the improvement of the bulk and light scattering because of the increase in pore volume which can scatter light, but the increase of PCC content was not so effective in the improvement of bulk.

Analysis of Compressive Characteristics of Wire-woven Bulk Kagome (Wire-woven Bulk Kagome의 압축 특성 분석)

  • Lee, Byung-Kon;Choi, Ji-Eun;Kang, Ki-Ju;Jeon, In-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.70-76
    • /
    • 2008
  • Periodic cellular metals (PCMs) are actively being investigated because of their excellent specific strength and stiffness, and multi-functionality such as a heat disperse structure bearing external loading. The Kagome truss PCM has been proved that it has higher resistance to plastic buckling and lower anisotropy than other truss PCMs. In this paper, the out-of-plane compressive responses of the WBK specimens have been measured, theoretically predicted and numerically analyzed. Three specimens of two-layered WBK are fabricated and tested for measuring the responses. The peak stress of compressive behavior and effective elastic modulus are predicted based on the equilibrium equation and elastic energy conservation. Moreover, the structure of the specimen is modeled using the commercial mesh generation code, PATRAN and the finite element analysis for the model under the compression is carried out using the commercial FE code, ABAQUS. Finally, the obtained results are compared with each other to analyze the compressive characteristics of Wire-woven Bulk Kagome (WBK).

Static and Dynamic Finite Element Analyses of a Bulk-Cement Trailer (벌크 시멘트 트레일러의 정동적 유한요소해석)

  • Kim, Jin-Gon;Lee, Jae-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.945-951
    • /
    • 2012
  • In this study, we analyze the static and dynamic characteristics of a bulk-cement trailer with a simpler structure that carries powders. The commercial software ANSYS is used to prepare a detailed three-dimensional model of the chassis frame and tank body that bear most of the load of a bulk-cement trailer for the finite element analysis. Modal analysis is conducted to examine the dynamic characteristics of the trailer body, and static analysis shows weak links in the structure. Finally, we propose a method to increase the strength of vulnerable areas and to reduce the weight of the trailer by applying the Taguchi method.

Electronic structure and magnetism of catalytic material Pt3Ni surfaces: Density-functional study

  • Sharma, Bharat Kumar;Kwon, Oryong;Odkhuu, Dorj;Hong, Soon Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.11a
    • /
    • pp.172-172
    • /
    • 2012
  • A Pt-skin $Pt_3Ni$(111) surface was reported to show high catalytic activity. In this study, we investigated the magnetic properties and electronic structures of the various oriented surfaces of bulk-terminated and Pt-segregated $Pt_3Ni$ by using a first-principles calculation method. The magnetic moments of Pt and Ni are appreciably enhanced at the bulk-terminated surfaces compared to the corresponding bulk values, whereas the magnetic moment of Pt on the Pt-segregated $Pt_3Ni$(111) surface is just slightly enhanced because of the reduced number of Ni neighboring atoms. Spin-decomposed density of states shows that the dz2 orbital plays a dominant role in determining the magnetic moments of Pt atoms in the different orientations. The lowering of the d-band center energy (-2.22 eV to -2.46 eV to -2.51 eV to -2.65 eV) in the sequence of bulk-terminated (100), (110), (111), and Pt-segregated (111) may explain the observed dependence of catalytic activity on surface orientation. Our d-band center calculation suggests that an observed enhanced catalytic activity of a $Pt_3Ni$(111) surface originates from the Pt-segregation.

  • PDF

Characteristics of Fe-Ni Nanopowders Prepared by Electrical Explosion of Wire in Water and Ethanol

  • Bac, L.H.;Kim, B.K.;Kim, J.S.;Kim, J.C.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.435-439
    • /
    • 2011
  • In this work, we prepared Fe-Ni alloy nanopowders by wire electrical explosion in deionized water and ethanol. Particles size and morphology of the as-synthesized nanoparticles prepared in water and ethanol were observed by transmission electron microscopy. In both cases, the as-synthesized nanoparticles were in nearly spherical shape and their size distribution was broad. The particles prepared in the water were in core-shell structure due to the oxidation of Fe element. X-ray diffraction was used to analyze the phase of the nanopowders. It showed that the nanopowders prepared in water had ${\gamma}$-Fe-Ni solid solution and FeO phase. The samples obtained in ethanol were in two phases of Fe-Ni solid solution, ${\gamma}$-Fe-Ni and ${\alpha}$-Fe-Ni. Bulk samples were made from the as-synthesized nanopowders by spark plasma sintering at $1000^{\circ}C$ for 10 min. Structure of the bulk sample was observed by scanning electron microscope. Magnetic properties of the as-synthesized nanopowders and the bulk samples were investigated by vibrating sample magnetometer. The hysteresis loop of the assynthesized nanopowders and the sintered bulk samples revealed a ferromagnetic characteristic.

Evaluation of the Changes in Local Paper Structure and Paper Properties Depending on the Forming Elements Types (탈수소자에 의한 종이 미세구조 및 물성 변화 평가)

  • Sung, Yong-Joo;Keller, D. Steven
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • The influence of different forming elements on the local paper structure and the related paper properties was investigated in this study. Specifically, a conventional papermaking foil system and a velocity induced drainage (VID) system were compared. The study involved the analysis of the product samples obtained from the commercial machine trials. The paper samples produced with VID forming systems showed better formation. The deterministic patter in the local structural profile map of the Foil samples indicated the structure of foil samples was more supple after forming process and then easier to be marked by various fabrics such as wet pressing fabric. The higher bulk was observed in the VID samples, which resulted in higher scattering coefficient, lower ZDT strength, and higher bending stiffness.

Variation of the Si-induced Gap State by the N defect at the Si/SiO2 Interface

  • Kim, Gyu-Hyeong;Jeong, Seok-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.128.1-128.1
    • /
    • 2016
  • Nitrided-metal gates on the high-${\kappa}$ dielectric material are widely studied because of their use for sub-20nm semiconductor devices and the academic interest for the evanescent states at the Si/insulator interface. Issues in these systems with the Si substrate are the electron mobility degradation and the reliability problems caused from N defects that permeates between the Si and the $SiO_2$ buffer layer interface from the nitrided-gate during the gate deposition process. Previous studies proposed the N defect structures with the gap states at the Si band gap region. However, recent experimental data shows the possibility of the most stable structure without any N defect state between the bulk Si valence band maximum (VBM) and conduction band minimum (CBM). In this talk, we present a new type of the N defect structure and the electronic structure of the proposed structure by using the first-principles calculation. We find that the pair structure of N atoms at the $Si/SiO_2$ interface has the lowest energy among the structures considered. In the electronic structure, the N pair changes the eigenvalue of the silicon-induced gap state (SIGS) that is spatially localized at the interface and energetically located just above the bulk VBM. With increase of the number of N defects, the SIGS gradually disappears in the bulk Si gap region, as a result, the system gap is increased by the N defect. We find that the SIGS shift with the N defect mainly originates from the change of the kinetic energy part of the eigenstate by the reduction of the SIGS modulation for the incorporated N defect.

  • PDF

The Microstructure and the Electrochemical Characteristics of Zr based Zr-V-Mn-Ni Laves Phase Alloy (Zr-V-Mn-Ni계 라브스상 합금의 미세 구조와 전기 화학적 특성)

  • Jeong, Chigyu;Han, Dongsoo;Chung, Wonsub;Kim, Ingon;Kim, Wonbaek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.3
    • /
    • pp.121-129
    • /
    • 1997
  • $ZrV_{0.1}Mn_{0.7}Ni_{1.2}$ alloy ingot (bulk alloy) made by the arc melting was found to be consisting of mostly of $ZrV_{0.2}Mn_{0.98}Ni_{1.04}$ matrix alloy and $ZrV_{0.01}Mn_{0.13}Ni_{1.2}$ 2nd phase alloy. The former alloy had the form of the C15 type Laves alloy structure and the latter one had the intermetallic compound structure of $Zr_9Ni_{11}$. In order to investigate the effect of these two phases on the electrochemical charge-discharge characteristics of bulk $ZrV_[0.1}Mn_0.7}Ni_{1.2}$ alloy, the matrix and the 2nd phase alloys were fabricated separately by arc melting method and their electrochemical characteristics were studied and compared with the bulk alloy. It was found that the discharge capacity was the lowest of 160 mAh/g in the 2nd phase alloy. The matrix alloy exhibited 200 mAh/g. Both were lower than that of the bulk alloy of 250 mAh/g. The matrix and the bulk alloys showed a similar properties in the activation stage, the high rate dischargeability and the self discharge characteristics. Also a signigicant capacity decrease was observed after activation in both alloys. Whereas the 2nd phase alloy showed the very different characteristics. This alloy was found to be difficult to activate. However the capacity was remained constant after the activation. Also the self discharge rate was seen to be better than those of the matrix and the bulk alloys.

  • PDF

Numerical Analysis on a Dependence of Hydrogen Diaphragm Compressor Performance on Oil Characteristics (수소용 다이어프램 압축기의 작동유 특성에 따른 수치해석)

  • Park, Hyun-Woo;Shin, Young-Il;Lee, Young-Jun;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.787-790
    • /
    • 2009
  • There are several types of compressors which are appropriate for hydrogen gas station. Metal diaphragm type of hydrogen compressor is the one of them, a use in which satisfies the requirements of maintaining gas purity and producing high pressure over 700 bar. The objective of this study is to investigate an characteristics of compression as bulk modulus of oil varies. Three cases of bulk modulus ranging from $2{\times}10^9$, $4.52{\times}10^9$ and $7{\times}10^9$ were studied through FSI (Fluid Structure Interaction) analysis. Gas pressure, oil pressure and deflection degree of diaphragm were analysed during a certain period of compression process. Highest pressure and deflection were found in the condition of high bulk modulus of $7{\times}10^9$.

  • PDF