• Title/Summary/Keyword: bulk explosive

Search Result 16, Processing Time 0.028 seconds

The Construction of large and Long Tunnel Using Bulk Explosives (벌크폭약을 이용한 대단면 장대터널 시공 사례)

  • 노상림;문상호;조영천;이상필;유지영
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.65-70
    • /
    • 2004
  • Lately, the length of tunnel, the number of long-large tunnel over 3 lanes are steeply increased because of the request for high-speed and straight road. Therefore, the maximization of excavation efficiency is needed in tunnel construction. The sapaesan tunnel (4 lanes with the length of 4km) construction was delayed with environmental conflict far 2 years. For making-up delayed construction period, various new methods were adopted to improve excavation length, look-out and blasting efficiency. This study introduced bulk explosive which is new method in tunnel blasting and verified the efficiency of bulk explosive far long-large tunnel.

Deformation Behavior of Zr-based Bulk Metallic Glass by Indentation under Different Loading Rate Conditions (다른 하중속도 조건에서 압입에 의한 벌크 금속유리의 변형거동)

  • Shin, Hyung-Seop;Chang, Soon-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.42-47
    • /
    • 2004
  • Metallic glasses are amorphous meta-stable solids and are now being processed in bulk form suitable for structural applications including impact. Bulk metallic glasses have many unique mechanical properties such as high yield strength and fracture toughness, good corrosion and wear resistance that distinguish them from crystalline metals and alloys. However, only a few studies could be found mentioning the dynamic response and damage of metallic glasses under impact or shock loading. In this study, we employed a small explosive detonator for the dynamic indentation on a Zr-based bulk amorphous metal in order to evaluate the damage behavior of bulk amorphous metal under impact loading. These results were compared with those of spherical indentation under quasi-static and impact loading. The interface bonded specimens were adopted to observe the appearances of subsurface damage induced during indentation under different loading conditions.

  • PDF

Case Studies and Future Prospect of Using Bulk Emulsion (에멀젼계 벌크폭약을 이용한 시공사례와 향후 전망)

  • Kim, Hee-Do;Choi, Sung-Hyun
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.64-76
    • /
    • 2008
  • Bulk Emulsion blasts using mechanized charging system, which is generally used in foreign countries, have recently introduced and gradually increased in Korea. The Bulk Emulsion are safe and able to increase the charging density for improvement of fragmentation and advancement especially in tunneling, and minimizing environmental problem. Because of less toxic gas generation, the explosives are called, namely ech-friendly products. There are two kinds of Bulk Emulsion; one is for open cut and the other is for tunneling. According to features of blast sites and its purpose, the compositions are different, but the principle is the same. In this study, trial blasts using Bulk Emulsion for tunneling had executed at 10 sites in Korea. The major result of the major job-sites is the following. First of all, compared with cartridge explosive, Bulk Emulsion was able to increase its charging density up to $35{\sim}60%$, to decrease the blast holes to approximately $10{\sim}30%$ down, and the advancement was improved up to $8{\sim}20%$ and also 30% up in its fragmentation. Toxic gas production after cartridge blasting showed 34.44ppm of its CO. Bulk Emulsion, however, showed 20.13ppm, which was 58.45% production of the cartridge explosive, and NOx was below 2ppm. The mechanized charging system of Bulk Emulsion should be applied to large sized tunnel blasting, long advanced tunnel which can secure the advancement of over $4{\sim}5m$, and the sites required finishing rapidly.

A Case Study of Minimizing Construction Time in Long and Large Twin Tube Tunnel (대단면 장대터널 공기단축 사례연구)

  • No Sang-Lim;Noh Seung-Hwan;Lee Sang-Pil;Kim Moon-Ho;Seo Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.177-184
    • /
    • 2005
  • The Sapaesan tunnel, the longest twin tube tunnel (4km) in Korea with 4 lanes each, is under construction with two years of delayed schedule because of the strong opposition from environmental bodies. Therefore, maximizing the construction efficiency was needed in tunnel project to compensate for time delay. This study includes improvements in the construction of the Sapaesan tunnel such as increasing excavation length and changing excavation sequence. In this paper the system for predicting tunnel face ahead is also introduced. Bulk-Emulsion explosive and Cylinder-Cut method were adopted in tunnel blasting to increase the excavation length. Optimum tunnel excavation step was designed to make up delayed time. Tunnel foe mapping, TSP survey and geological prediction system using computerized jumbo-drill were performed fnr safe construction of long and large twin tube tunnel.

Experimental and Numerical Studies on Application of Industrial Explosives to Explosive Welding, Explosive Forming, Shock Powder Consolidation (산업용 폭약을 이용한 폭발용접, 폭발성형과 충격분말고화에 관한 실험 및 수치해석적 연구)

  • Kim, Young-Kook;Kang, Seong-Seung;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Theoretical backgrounds on the experimental methods of explosive welding, explosive forming and shock consolidation of powders are introduced. Explosive welding experiments of titanium (Ti) and stainless steel (SUS 304) plate were carried out. It was revealed that a series of waves of metal jet are generated in the contact surface between both materials; and that the optimal collision velocity and collision angle is about 2,100~2,800 m/s and $15{\sim}20^{\circ}$, respectively. Also, explosive forming experiments of Al plate were performed and compared to a conventional press forming method. The results confirmed that the shock-loaded Al plate has a larger curvature deformation than those made using conventional press forming. For shock consolidation of powders, the propagation behaviors of a detonation wave and underwater shock wave generated by explosion of an explosive are investigated by means of numerical calculation. The results revealed that the generation and convergence of reflected waves occur at the wall and center position of water column, and also the peak pressure of the converged reflected waves was 20 GPa which exceeds the detonation pressure. As results from the consolidation experiments of metal/ceramic powders ($Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$), shock-consolidated $Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$ bulk without cracks was successfully obtained by adapting the suggested water container and strong bonding between powder particles was confirmed through microscopic observations.

A Study on the Optimum Condition and GMB Addition in Emulsifying (에멀젼화의 퇴적조건과 예감제 첨가에 관한 연구)

  • 안명석;조명찬;김종현
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.1-4
    • /
    • 2004
  • The gelatine dynamite, which has been traditionally used in Korea as the 2nd generation explosive, is now being rapidly replaced by an emulsion explosive because of the change in life environment economic schemes, and safety reasons. However, there has been lack of study in the surfactant which is an important factor in manufacturing technology of emulsion explosives, and especially GMB technology has not been used in Korea. In this study, effective usage of surfactant with optimum dosage and optimum mixing temperature of GMB was investigated to increase safety and effectiveness.

Oxidative stability of extracts from red ginseng and puffed red ginseng in bulk oil or oil-in-water emulsion matrix

  • Lee, Sang-Jun;Oh, Sumi;Kim, Mi-Ja;Sim, Gun-Sub;Moon, Tae Wha;Lee, JaeHwan
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.320-326
    • /
    • 2018
  • Background: Explosive puffing can induce changes in the chemical, nutritional, and sensory quality of red ginseng. The antioxidant properties of ethanolic extracts of red ginseng and puffed red ginseng were determined in bulk oil and oil-in-water (O/W) emulsions. Methods: Bulk oils were heated at $60^{\circ}C$ and $100^{\circ}C$ and O/W emulsions were treated under riboflavin photosensitization. In vitro antioxidant assays, including 2,2-diphenyl-1-picrylhudrazyl, 2,2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid, ferric reducing antioxidant power, total phenolic content, and total flavonoid content, were also performed. Results: The total ginsenoside contents of ethanolic extract from red ginseng and puffed red ginseng were 42.33 mg/g and 49.22 mg/g, respectively. All results from above in vitro antioxidant assays revealed that extracts of puffed red ginseng had significantly higher antioxidant capacities than those of red ginseng (p < 0.05). Generally, extracts of puffed red and red ginseng had high antioxidant properties in riboflavin photosensitized O/W emulsions. However, in bulk oil systems, extracts of puffed red and red ginseng inhibited or accelerated rates of lipid oxidation, depending on treatment temperature and the type of assay used. Conclusion: Although ethanolic extracts of puffed red ginseng showed stronger antioxidant capacities than those of red ginseng when in vitro assays were used, more pro-oxidant properties were observed in bulk oils and O/W emulsions.

Effects of the Maghemite for Explosive accident Prevention to Liquefied Petroleum Gas (LPG 폭발사고 예방을 위한 Maghemite의 영향)

  • 박영구
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.67-78
    • /
    • 1996
  • Gas sensing element, $\gamma-Fe_2O_3$was synthesized by dehydration, reduction, and oxidation of $$${\gamma}$-FeOOH, which was synthesized with $FeSO_4\;{\cdot}\;7H_2O$ and NaOH. They were produced as a bulk-type, a thick film-type. Then, their responses and mechanisms of response to the gas of liquefied-petroleum were studied. The qualities of gas sensing elements are decided by the structure and the relative surface area. In the process of $\alpha-FeOOH $synthesis, the effects of reaction conditions as the equivalent ratio, on the structure and the relative surface area of gas sensing element were observed. The changes of the structure were measured with XRD, SEM, TG-DTA and BET. The resistance changes of the synthesized gas sensor in the air were measured. The response ratio were also measured for the changes of working temperature and gas concentration. As a result of analysis with XRD, it was confirmed that the the best conditions for the synthesis of $\alpha -FeOOH$ were equivalent ratio 0.65. The thick film-type element of $\gamma-Fe_2O_3$responded more quickly than the bulk-type did. The structure and the relative surface area of the $\alpha-FeOOH $were confirmed as the important factors deciding gas response charcteristics.

  • PDF

Pulsed laser ablation of hydroxyapatite in ethanol

  • Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.219-223
    • /
    • 2014
  • Pulsed laser ablation in liquid medium was successfully employed to synthesize hydroxyapatite colloidal nanoparticles. The crystalline phase, particle morphology, size distribution and microstructure of the hydroxyapatite nanoparticles were investigated in detail. The obtained hydroxyapatite nanoparticles had spherical shape with sizes ranging from 5 to 20 nm. The laser ablation and the nanoparticle forming process were discussed with explosive ejection mechanism by investigating change of surface morphology on target. The analytical results of XPS, FT-IR and Raman spectroscopy confirms that the stoichiometry and bonding properties of the hydroxyapatite nanoparticles are in good agreement with reported bulk hydroxyapatite materials.

Examination of Proliferation Resistance Assessment for Nuclear Fuel Cycles

  • Lee, Yoon-Hee;Lee, Kun-Jai
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.73-73
    • /
    • 2009
  • There are many factors to evaluate nuclear fuel cycle such as safety, public acceptance, economics, etc.. Transparency, proliferation, environment issues, public acceptance and safety are essential to expansion of nuclear industry and proliferation resistance is one of key constraints in the deployment of advanced nuclear energy systems. Proliferation resistance is being considered as one of the most important factors in assessing advanced and innovative nuclear systems. IAEA defmes proliferation resistance as characteristics of nuclear energy system that impedes the diversion or undeclared production of nuclear material [1]. Barriers to proliferation is consist of intrinsic and extrinsic barriers(institutional measures). Intrinsic barriers are characterized in material barriers and technical barriers in general. Material barriers is intrinsic, or inherent, qualities of materials that reduce the inherent desirability or attractiveness of the material as an explosive. Isotopic, chemical, radiological, mass and bulk, detectability barriers are considered as material barriers attributes [2]. Proliferation resistance is examined for several nuclear fuel cycles based on previous study which is focused on the intrinsic barriers [3-4]. Pyroprocessing and DUPIC are considered as reprocessing technologies in Korea and the PWR direct disposal is considered. Comparative assessments of the proliferation attributes and merits of different fuel cycle systems will be performed and the optimal back-end fuel cycle and strategy will be proposed.

  • PDF