• Title/Summary/Keyword: bulk applications

Search Result 350, Processing Time 0.023 seconds

A Study on Sliding Mode Control of EHA System for Robust Control (견실한 추종 제어를 위한 EHA 시스템의 슬라이딩 모드제어에 관한 연구)

  • Park, Yong-Ho;Park, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 2009
  • The response characteristics of EHA systems are sensitive to the temperature change of working fluid because the temperature of working fluid causes the variation of system parameters such as effective bulk modulus and viscous friction coefficient. In this paper, a precise position control of EHA system using the adaptive sliding mode control system is suggested. The adapted system parameters such as effective bulk modulus and viscous friction coefficient can be used for monitoring failures in the EHA system which has potential applications in the industrial fields. Not only the accuracy of adapted system parameters but also the improved performance and robustness in a given reference position of the cylinder are verified by computer simulation using AMESim software.

A Study on Analysis for Bulk Forming of a Single Crystal Milli-Product (단결정 밀리 부품의 입체성형 해석에 관한 연구)

  • Lee Y. S.;Kim Y. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.245-249
    • /
    • 2001
  • This paper is concerned with numerical analyses for bulk forming of a single crystal milli-product, whose typical size ranges from a few hundreds ${\mu}m$ to a few mm. The numerical formulation invoked in this paper combines the crystal plasticity theory considering texture development and the ductile damage mechanics for growth of micro voids, since orientation development and growth of micro voids become the primary factors for bulk forming of milli-size products. As applications, milli-extrusion of a single crystal round bar and milli-rolling of a single crystal plate are simulated and the results are discussed in detail.

  • PDF

Performance Analysis of a Finite-Buffer Discrete-Time Queueing System with Fixed-Sized Bulk-service

  • Chang, Seok-Ho;Kim, Tae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9B
    • /
    • pp.783-792
    • /
    • 2003
  • We consider a finite-buffer discrete-time queueing system with fixed-size bulk-service discipline: Geo/ $G^{B}$1/K+B. The main purpose of this paper is to present a performance analysis of this system that has a wide range of applications in Asynchronous Transfer Mode (ATM) and other related telecommunication systems. For this purpose, we first derive the departure-epoch probabilities based on the embedded Markov chain method. Next, based on simple rate in and rate out argument, we present stable relationships for the steady-state probabilities of the queue length at different epochs: departure, random, and arrival. Finally, based on these relationships, we present various useful performance measures of interest such as the moments of number of packets in the system at three different epochs and the loss probability. The numerical results are presented for a deterministic service-time distribution - a case that has gained importance in recent years.s.

Film Bulk Acoustic Wave Resonator using surface micromachining (표면 마이크로머시닝을 이용한 압전 박막 공진기 제작)

  • 김인태;박은권;이시형;이수현;이윤희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.156-159
    • /
    • 2002
  • Film Bulk Acoustic wave Resonator (FBAR) using thin piezoelectric films can be fabricated as monolithic integrated devices with compatibility to semiconductor process, leading to small size, low cost and high Q RF circuit elements with wide applications in communications area. This paper presents a MMIC compatible Suspended FBAR using surface micromachining. It is possible to make Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$membrane by using surface micromachining and its good effect is to remove the substrate silicon loss. FBAR was made on 2$\mu\textrm{m}$ multi-layered membrane using CVD process. According to our result, Fabricated film bulk acoustic wave resonator has two adventages. First, in the respect of device Process, our Process of the resonator using surface micromachining is very simple better than that of resonator using bull micromachining. Second, because of using the multiple layer, thermal expansion coefficient is compensated, so, the stress of thin film is reduced.

  • PDF

Bulk Insertion Method for R-tree using Seeded Clustering (R-tree에서 Seeded 클러스터링을 이용한 다량 삽입)

  • 이태원;문봉기;이석호
    • Journal of KIISE:Databases
    • /
    • v.31 no.1
    • /
    • pp.30-38
    • /
    • 2004
  • In many scientific and commercial applications such as Earth Observation System (EOSDIS) and mobile Phone services tracking a large number of clients, it is a daunting task to archive and index ever increasing volume of complex data that are continuously added to databases. To efficiently manage multidimensional data in scientific and data warehousing environments, R-tree based index structures have been widely used. In this paper, we propose a scalable technique called seeded clustering that allows us to maintain R-tree indexes by bulk insertion while keeping pace with high data arrival rates. Our approach uses a seed tree, which is copied from the top k levels of a target R-tree, to classify input data objects into clusters. We then build an R-tree for each of the clusters and insert the input R-trees into the target R-tree in bulk one at a time. We present detailed algorithms for the seeded clustering and bulk insertion as well as the results from our extensive experimental study. The experimental results show that the bulk insertion by seeded clustering outperforms the previously known methods in terms of insertion cost and the quality of target R-trees measured by their query performance.

The fabrication of bulk magnet stacked with HTS tapes for the magnetic levitation

  • Park, Insung;Kim, Gwantae;Kim, Kyeongdeok;Sim, Kideok;Ha, Hongsoo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.47-51
    • /
    • 2022
  • With the innovative development of bio, pharmaceutical, and semiconductor technologies, it is essential to demand a next-generation transfer system that minimizes dust and vibrations generated during the manufacturing process. In order to develop dust-free and non-contact transfer systems, the high temperature superconductor (HTS) bulks have been applied as a magnet for levitation. However, sintered HTS bulk magnets are limited in their applications due to their relatively low critical current density (Jc) of several kA/cm2 and low mechanical properties as a ceramic material. In addition, during cooling to cryogenic temperatures repeatedly, cracks and damage may occur by thermal shock. On the other hand, the bulk magnets made by stacked HTS tapes have various advantages, such as relatively high mechanical properties by alternate stacking of the metal and ceramic layer, high magnetic levitation performance by using coated conductors with high Jc of several MA/cm2, consistent superconducting properties, miniaturization, light-weight, etc. In this study, we tried to fabricate HTS tapes stacked bulk magnets with 60 mm × 60 mm area and various numbers of HTS tape stacked layers for magnetic levitation. In order to examine the levitation forces of bulk magnets stacked with HTS tapes from 1 to 16 layers, specialized force measurement apparatus was made and adapted to measure the levitation force. By increasing the number of HTS tapes stacked layers, the levitation force of bulk magnet become larger. 16 HTS tapes stacked bulk magnets show promising levitation force of about 23.5 N, 6.538 kPa at 10 mm of levitated distance from NdFeB permanent magnet.

Structuring of Bulk Silicon Particles for Lithium-Ion Battery Applications

  • Bang, Byoung-Man;Kim, Hyun-Jung;Park, Soo-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • We report a simple route for synthesizing multi-dimensional structured silicon anode materials from commercially available bulk silicon powders via metal-assisted chemical etching process. In the first step, silver catalyst was deposited onto the surface of bulk silicon via a galvanic displacement reaction. Next, the silver-decorated silicon particles were chemically etched in a mixture of hydrofluoric acid and hydrogen peroxide to make multi-dimensional silicon consisting of one-dimensional silicon nanowires and micro-scale silicon cores. As-synthesized silicon particles were coated with a carbon via thermal decomposition of acetylene gas. The carbon-coated multi-dimensional silicon anodes exhibited excellent electrochemical properties, including a high specific capacity (1800 mAh/g), a stable cycling retention (cycling retention of 89% after 20 cycles), and a high rate capability (71% at 3 C rate, compared to 0.1 C rate). This process is a simple and mass-productive (yield of 40-50%), thus opens up an effective route to make a high-performance silicon anode materials for lithiumion batteries.

Comparison of Electrical Characteristics of SiGe pMOSFETs Formed on Bulk-Si and PD-SOI (Bulk-Si와 PD-SOI에 형성된 SiGe p-MOSFET의 전기적 특성의 비교)

  • Choi, Sang-Sik;Choi, A-Ram;Kim, Jae-Yeon;Yang, Jeon-Wook;Han, Tae-Hyun;Cho, Deok-Ho;Hwang, Yong-Woo;Shim, Kyu-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.491-495
    • /
    • 2007
  • This paper has demonstrated the electrical properties of SiGe pMOSFETs fabricated on both bulk-Si and PD SOI substrates. Two principal merits, the mobility increase in strained-SiGe channel and the parasitic capacitance reduction of SOI isolation, resulted in improvements in device performance. It was observed that the SiGe PD SOI could alleviate the floating body effect, and consequently DIBL was as low as 10 mV/V. The cut-off frequency of device fabricated on PD SOI substrate was roughly doubled in comparison with SiGe bulk: from 6.7 GHz to 11.3 GHz. These experimental result suggests that the SiGe PD SOI pMOSFET is a promising option to drive CMOS to enhance performance with its increased operation frequency for high speed and low noise applications.

Fabrication and Fault Test Results of Bi-2212/Cu-Ni Tubes for Superconducting Fault Current Limiting Elements (Bi-2212/Cu-Ni 튜브로 제작한 초전도 한류소자의 단락사고시험 결과)

  • Oh, S.Y.;Yim, S.W.;Yu, S.D.;Kim, H.R.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • For the development of superconducting fault current limiters (SFCLs), fault current limiting elements were fabricated out of Bi-2212 bulk tubes and tested. The SFCL elements consisted of tube shaped Bi-2212 bulks and metal shunts for the stabilizers. Firstly, the Bi-2212 bulk tubes were processed based on a design of monofilar coils in order to acquire large resistance and high voltage rating. 300 mm-long Bi-2212 tubes were designed to have the current path of 410 cm in length with 24 turns and 41 mm in diameter. The processed monofilar coil, as designed, had 300 A $I_c$ at 77 K. The fabricated superconducting monofilar coils were affixed to Cu-Ni alloy as that of stabilizers. The Cu-Ni alloys were processed to have the same shape of the superconducting monofilar coils. The Cu-Ni coil had resistivity of 32 ${\mu}{\Omega}$-cm at 77 K and 37 ${\mu}{\Omega}$-cm at 300 K. The metal shunts were attached to the outside of the Bi-2212 monofilar coil by a soldering technique. After the terminals made of copper were attached to both ends of the superconductor-metal shunt composite, the gap between the turns and the surface of the elements was filled with an epoxy and a dense mesh made of FRP in order to enhance the mechanical strength. The completed SFCL elements went through fault tests, and we confirmed that the voltage rating of 143 $V_{rms}$ (E =0.35 $V_{rms}$/cm) could be accomplished.

  • PDF