• Title/Summary/Keyword: building vulnerability

Search Result 179, Processing Time 0.031 seconds

The Method for Analyzing Potentially Collapsible Aged Buildings Using Big Data and its Application to Seoul (빅데이터 기반의 잠재적 붕괴위험 노후건축물 도출 방법 및 서울특별시 적용 연구)

  • Lim, Hae-Yeon;Park, Cheol-Yeong;Cho, Sung-Hyeon;Lee, Ghang
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.2
    • /
    • pp.139-146
    • /
    • 2019
  • The purpose of this study is to derive an improved method for analyzing old buildings with risk of collapse using public big data. Previous studies on the risk of building collapse focused on internal factors such as building age and structural vulnerability. However, this study suggests a method to derive potentially collapsible buildings considering not only internal factors of buildings but also external factors such as nearby new construction data. Based on the big data analysis, this study develops a system to visualize vulnerable buildings that require safety diagnosis and proposed a future utilization plan.

Evaluation of structural operativity of two strategic buildings through Seismic Model

  • Foti, Dora;Giannoccaro, Nicola Ivan;Greco, Pierluigi;Lerna, Michela;Paolicelli, Raffaele;Vacca, Vitantonio
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.45-57
    • /
    • 2020
  • This paper presents the experimental application of a new method for seismic vulnerability assessment of buildings recently introduced in literature, the SMAV (Seismic Model Ambient Vibration) methodology with reference to their operational limit state. The importance of this kind of evaluation arises from the civil protection necessity that some buildings, considered strategic for seismic emergency management, should retain their functionality also after a destructive earthquake. They do not suffer such damage as to compromise the operation within a framework of assessment of the overall capacity of the urban system. To this end, for the characterization of their operational vulnerability, a Structural Operational Index (IOPS) has been considered. In particular, the dynamic environmental vibrations of the two considered strategic buildings, the fire station and the town hall building of a small town in the South of Italy, have been monitored by positioning accelerometers in well-defined points. These measurements were processed through modern Operational Modal Analysis techniques (OMA) in order to identify natural frequencies and modal shapes. Once these parameters have been determined, the structural operational efficiency index of the buildings has been determined evaluating the seismic vulnerability of the strategic structures analyzed. his study aimed to develop a model to accurately predict the acceleration of structural systems during an earthquake.

Analysis of Improvement Effects on Building Approach Vulnerability by Expanding Emergency Rescue Centers in Busan (부산지역 119구조대 증설을 통한 건축물 접근취약성 개선효과 분석)

  • Choi, Jun-Ho;Lee, Ji-Soo;Hong, Won-Hwa
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.79-87
    • /
    • 2015
  • The placement of Korean fire-fighting administrative power in urban areas shows regional unbalance. In an ideal system, all citizens would be provided with equal fire protection and rescue services, but this is usually difficult to realize due to regional conditions or budget problems. In the case of Busan Metropolitan City, we deduced that it is impossible for half of the buildings to receive rescue services within 5 min, and the conditions are much worse for areas with long or wide fire-fighting service regions. The approach vulnerability for the existing emergency rescue squad locations was assessed. The results revealed that if a rescue team's location is shifted, the improvement effect will be virtually insignificant because of their geographical position. Therefore, this study suggests the establishment of additional rescue squads. It is proven that adding 5 rescue centers in the following locations could solve the problem of approach vulnerability: Bukbu, Gangseo, Geumjeong, Gijang, and Haeundae, in order of effectiveness. The number of buildings in the areas is 53,546.

A New Evaluation Model for Natural Attenuation Capacity of a Vadose Zone Against Petroleum Contaminants (유류 오염물질에 대한 불포화대 자연 저감능 등급화 기법 개발)

  • Woo, Heesoo;An, Seongnam;Kim, Kibeum;Park, Saerom;Oh, Sungjik;Kim, Sang Hyun;Chung, Jaeshik;Lee, Seunghak
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.92-98
    • /
    • 2022
  • Although various methods have been proposed to assess groundwater vulnerability, most of the models merely consider the mobility of contaminants (i.e., intrinsic vulnerability), and the attenuation capacity of vadose zone is often neglected. This study proposed an evaluation model for the attenuation capacity of vadose zone to supplement the limitations of the existing index method models for assessing groundwater vulnerability. The evaluation equation for quantifying the attenuation capacity was developed from the combined linear regression and weighted scaling methods based on the lab-scale experiments using various vadose zone soils having different physical and biogeochemical properties. The proposed semi-quantifying model is expected to effectively assess the attenuation capacity of vadose zone by identifying the main influencing factors as input parameters together with proper weights derived from the coefficients of the regression results. The subsequent scoring and grading system has great versatility while securing the objectivity by effectively incorporating the experimental results.

A Study on the Development of DevSecOps through the Combination of Open Source Vulnerability Scanning Tools and the Design of Security Metrics (오픈소스 취약점 점검 도구 및 종합 보안 메트릭 설계를 통한 DevSecOps 구축방안 연구)

  • Yeonghae Choi;Hyeongjun Noh;Seongyun Cho;Hanseong Kang;Dongwan Kim;Suhyun Park;Minjae Cho;Juhyung Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.4
    • /
    • pp.699-707
    • /
    • 2023
  • DevSecOps is a concept that adds security procedures to the operational procedures of DevOps to respond to the short development and operation cycle. Multi-step vulnerability scanning process should be considered to provide reliable security while supporting rapid development and deployment cycle in DevSecOps. Many open-source vulnerability scanning tools available can be used for each stage of scanning, but there are difficulties in evaluating the security level and identifying the importance of information in integrated operation due to the various functions supported by the tools and different security results. This paper proposes an integrated security metric design plan for scurity results and the combination of open-source scanning tools that can be used in security stage when building the open-source based DevSecOps system.

Evaluation of Vulnerability to Groundwater Contamination using Groundwater Quality Characteristics and DRASTIC Index in Miryang City (밀양시 지하수 수질 특성과 DRASTIC 지수를 이용한 지하수 오염취약성 평가)

  • SeongYeon Jung;Sieun Kim;Sul-Min Yun;Jeheon Oh;Chung-Mo Lee
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.3
    • /
    • pp.23-36
    • /
    • 2024
  • Miryang City, the study area, has a water supply rate of 87.4%, which is 12% lower than the national water supply rate of 99.4%, but has a high dependence on groundwater due to the high ratio of farms. In agricultural areas, contamination becomes relatively more critical, requiring significant attention to the management and conservation of groundwater resources. This study aims at estimate groundwater vulnerability of Miryang City using the DRASTIC index map, Piper diagram, and water quality data to correlated with the DRASTIC index. The results from DRASTIC map were divided into five classes: very high, high, moderate, low, and very low. The areas in central and southern part of study area, which are characterize by a very high index with [Ca-Cl] and [Na-Cl] water types, covering a large alluvium with the Miryang River and Nakdonggang River. In addition, a correlation analysis between groundwater quality parameters and the DRASTIC index was carried out. Chloride, sodium, and sulfate ions showed a weak relationship with DRASTIC index, with correlation coefficient was 0.507, 0.487 and 0.344, respectively. These results suggest that aquifer media, soil media, hydraulic conductivity, and chloride ion are important factors for groundwater vulnerability.

Seismic fragility curves of single storey RC precast structures by comparing different Italian codes

  • Beilic, Dumitru;Casotto, Chiara;Nascimbene, Roberto;Cicola, Daniele;Rodrigues, Daniela
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.359-374
    • /
    • 2017
  • The seismic events in Northern Italy, May 2012, have revealed the seismic vulnerability of typical Italian precast industrial buildings. The aim of this paper is to present a seismic fragility model for Italian RC precast buildings, to be used in earthquake loss estimation and seismic risk assessment by comparing two building typologies and three different codes: D.M. 3-03-1975, D.M. 16-01-1996 and current Italian building code that has been released in 2008. Based on geometric characteristics and design procedure applied, ten different building classes were identified. A Monte Carlo simulation was performed for each building class in order to generate the building stock used for the development of fragility curves trough analytical method. The probabilistic distributions of geometry were mainly obtained from data collected from 650 field surveys, while the material properties were deduced from the code in place at the time of construction or from expert opinion. The structures were modelled in 2D frameworks; since the past seismic events have identified the beam-column connection as the weakest element of precast buildings, two different modelling solutions were adopted to develop fragility curves: a simple model with post processing required to detect connection collapse and an innovative modelling solution able to reproduce the real behaviour of the connection during the analysis. Fragility curves were derived using both nonlinear static and dynamic analysis.

Probabilistic seismic and fire assessment of an existing reinforced concrete building and retrofit design

  • Miano, Andrea;de Silva, Donatella;Compagnone, Alberto;Chiumiento, Giovanni
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.481-494
    • /
    • 2020
  • In this paper, a probability-based procedure to evaluate the performance of existing RC structures exposed to seismic and fire actions is presented. The procedure is demonstrated with reference to an existing old school building, located in Italy. The vulnerability assessment of the building highlights deficiencies under both static and seismic loads. Retrofit operations are designed to achieve the seismic safety. The idea of the work consists in assessing the performance of the existing and retrofitted building in terms of both the seismic and fire resistance. The seismic retrofit and fire resistance upgrading follow different paths, depending on the specific configuration of the building. A good seismic retrofit does not entail an improving of the fire resistance and vice versa. The goal of the current work is to study the variation of response due to the uncertainties considered in records/fire curves selection and to carry out the assessment of the studied RC structure by obtaining fragility curves under the effect of different records/temperature. The results show the fragility curves before and after retrofit operations and both in terms of seismic performance and fire resistance performance, measuring the percent improving for the different limit states.

Sub-Components Evaluation Method of Potential Flood Damage Considering Yearly Change and Improved Method (연도별 변화와 개선된 방법을 고려한 홍수피해잠재능의 세부 항목 평가 방안)

  • Hong, Seungjin;Joo, Hongjun;Kim, Kyoungtak;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.370-382
    • /
    • 2018
  • The purpose of this study is to quantitatively and effectively evaluate the factors affecting flood damage by watershed. National Water Resource Plan(MOCT, 2001) has been developed Potential Flood Damage(PFD) which indicates flood vulnerability. But, it is only a simple grouping and it does not provide guidelines for flood control planning based on detailed evaluation of sub-components. In this study, we used PFD in the Han River basin according to the method applied in the National Water Resource Plan (existing method) and improvement based on actual flood hazard area and data. As an application method, after analyzing by yearly change(2009~2014), we compared and analyzed the tendency of the sub - components that constitute the potential and risk rather than the current grouping. As the result, it was possible to accurately evaluate the existing and improved methods, and it was possible to derive the vulnerability rankings, but the existing methods have different results from the actual watershed tendency. Therefore, the PFD of the improvement method that correctly reflects past history and watershed characteristics is more appropriate for the evaluation of flood vulnerability in the watershed. In addition, it is reasonable to establish a flood control plan referring to this and prevent flood damage in advance.

Development of Flood Damage Estimation Method for Urban Areas Based on Building Type-specific Flood Vulnerability Curves (건축물 유형별 침수취약곡선 기반의 도시지역 침수피해액 산정기법 개발)

  • Jang, Dongmin;Park, Sung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.149-160
    • /
    • 2024
  • Severe casualties and property damage are occurring due to urban floods caused by extreme rainfall. However, there is a lack of research on preparedness, appropriate estimation of flood damages, assessment of losses, and compensation. Particularly, the flood damage estimation methods used in the USA and Japan show significant differences from the domestic situation, highlighting the need for methods tailored to the Korean context. This study addresses these issues by developing an optimized flood damage estimation technique based on the building characteristics. Utilizing the flood prediction solution developed by the Korea Institute of Science and Technology Information (KISTI), we have established an optimal flood damage estimation technology. We introduced a methodology for flood damage estimation by incorporating vulnerability curves based on the inventory of structures and apply this technique to real-life cases. The results show that our approach yields more realistic outcomes compared to the flood damage estimation methods employed in the USA and Japan. This research can be practically applied to procedures for flood damage in urban basement residences, and it is expected to contribute to establishing appropriate response procedures in cases of public grievances.