• 제목/요약/키워드: building visual inspection

검색결과 57건 처리시간 0.02초

Condition assessment of aged underground water tanks-Case study

  • Zafer Sakka;Ali Saleh;Thamer Al-Yaqoub;Hasan Karam;Shaikha AlSanad;Jamal Al-Qazweeni;Mohammad Mosawi;Husain Al-Baghli
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.493-504
    • /
    • 2024
  • This paper presents the methodology and results for the investigation of the structural safety of 40 aged underground water tanks to support the weight of photovoltaic (PV) systems that were supposed to be placed on their roof reinforced concrete (RC) slabs. The investigation procedure included (1) review of available documents; (2) visual inspection of the roof RC slabs; (3) carrying out a series of nondestructive (ND) tests; and (4) analysis of results. Out of the 40 tanks, eleven failed the visual inspection phase and were discarded from further investigation. The roof RC slabs of the tanks that passed the visual inspection were subjected to a series of ND tests that included infrared thermography, impact echo, ultrasonic pulse velocity (UPV), Schmidt hammer, concrete core compressive strength, and water-soluble chloride content. The NDT results proved that eight more tanks were not suitable to support the PV systems. Based on the results of the visual inspection and testing, a probabilistic decision-making criterion was established to reach a decision regarding the structural integrity of the roof slabs. The study concluded that the condition of the drainage filter was essential in protecting the tanks and its intact presence can be used as a strong indication of the structural integrity of the roof RC slabs.

UAV를 이용한 돔형 원자력 격납건물 외관조사를 위한 3차원 모델기반 비행 좌표 생성 방법 (3-D Model-based UAV Path Generation for Visual Inspection of the Dome-type Nuclear Containment Building)

  • 김봉근
    • 한국BIM학회 논문집
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 2016
  • This paper provides a method for generating flight path of Unmanned Aerial Vehicle (UAV) that is intended to be used in visual inspection of dome-type nuclear containment building. The method basically employs 3-D model to extract accurate location coordinates. Two basic route patterns that provide guide lines in defining moving locations were defined for each side wall and dome section of the containment. The route patterns support sequential capturing of images as well. In addition, several simple equations and an algorithm for calculation of the moving location on the route were developed on the basis of 3-D geometric characteristics of the containment building. A prototype computer program has been implemented to validate the proposed method, and a case study shows the method can visualize covering area in 3-D model as well.

Study on Levee Visual Inspection Information System Building Using Mobile Technology

  • Kang, Seung-Hyun;Lee, Jong-Min
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권6호
    • /
    • pp.71-76
    • /
    • 2016
  • In this paper, we propose the mobile visual inspection information system using DGPS and portable range finder for levee safety inspection. Instead of existing visual inspection management method that is stored hand-written data, this system is designed to manage directly the visual inspection information using mobile devices in the field of levee. And through extracting accurate DGPS coordinates information about damage location of levee, this system is developed to ensure efficiency for the main task arising from the levee site such as inspection, maintenance and reinforcement. Furthermore, when damage has occurred at the point that inspector is not able to approach, this system can record the damage site data correctly, by converting data such as position, orientation and height of the damage point into the World Geodetic System coordinates. The position, orientation and height data was extracted automatically through the DGPS and portable range finder. And by applying the augmented reality method, this system was implemented for inspector to revisit the point of damage easily in order to perform the management, maintenance and reinforcement of the levee later.

Automated condition assessment of concrete bridges with digital imaging

  • Adhikari, Ram S.;Bagchi, Ashutosh;Moselhi, Osama
    • Smart Structures and Systems
    • /
    • 제13권6호
    • /
    • pp.901-925
    • /
    • 2014
  • The reliability of a Bridge management System depends on the quality of visual inspection and the reliable estimation of bridge condition rating. However, the current practices of visual inspection have been identified with several limitations, such as: they are time-consuming, provide incomplete information, and their reliance on inspectors' experience. To overcome such limitations, this paper presents an approach of automating the prediction of condition rating for bridges based on digital image analysis. The proposed methodology encompasses image acquisition, development of 3D visualization model, image processing, and condition rating model. Under this method, scaling defect in concrete bridge components is considered as a candidate defect and the guidelines in the Ontario Structure Inspection Manual (OSIM) have been adopted for developing and testing the proposed method. The automated algorithms for scaling depth prediction and mapping of condition ratings are based on training of back propagation neural networks. The result of developed models showed better prediction capability of condition rating over the existing methods such as, Naïve Bayes Classifiers and Bagged Decision Tree.

UAV와 BIM 정보를 활용한 시설물 외관 손상의 위치 측정 방법 (Structural Damage Localization for Visual Inspection Using Unmanned Aerial Vehicle with Building Information Modeling Information)

  • 이용주;박만우
    • 한국BIM학회 논문집
    • /
    • 제13권4호
    • /
    • pp.64-73
    • /
    • 2023
  • This study introduces a method of estimating the 3D coordinates of structural damage from the detection results of visual inspection provided in 2D image coordinates using sensing data of UAV and 3D shape information of BIM. This estimation process takes place in a virtual space and utilizes the BIM model, so it is possible to immediately identify which member of the structure the estimated location corresponds to. Difference from conventional structural damage localization methods that require 3D scanning or additional sensor attachment, it is a method that can be applied locally and rapidly. Measurement accuracy was calculated through the distance difference between the measured position measured by TLS (Terrestrial Laser Scanner) and the estimated position calculated by the method proposed in this study, which can determine the applicability of this study and the direction of future research.

도로시설물 적용 앵커볼트 결함 검출을 위한 비파괴(Ultrasonic) 검사 기법 적용에 대한 연구 (A Study on the Application of Non-destructive (Ultrasonic) Inspection Technique to Detect Defects of Anchor Bolts for Road Facilities)

  • 서동우;김재환;이진혁;조한민;박상기;김민수
    • 한국방재안전학회논문집
    • /
    • 제15권4호
    • /
    • pp.11-20
    • /
    • 2022
  • 국내의 앵커볼트 일반 비파괴 검사법은 육안검사와 타음검사를 적용하고 있으나, 육안검사는 기초에 포함된 부분이나 너트 및 베이스 플레이트가 설치된 부분에서 앵커볼트의 부식이나 피로균열 등을 확인하는 것이 어렵다. 타음검사는 주변 환경과 개인차에 의한 영향을 받기 때문에 객관적인 조사가 어려운 것이 현실이므로 이러한 결함을 정량적으로 추정할 수 있는 비파괴 검사 기술개발이 필요하다. 국내 도로시설물 앵커볼트의 점검은 육안조사를 수행하고 있으며, 교량받침, 낙교방지시설 등의 앵커볼트 중요도가 높으므로 기존 점검방법과 함께 비파괴검사 기술을 개발하여 앵커볼트의 예방정비를 통해 교량 수명연장에 기여할 필요가 있다. 본 기술 개발을 통해 현재 수행하고 있지 않은 앵커볼트의 비파괴검사를 수행함으로 도로시설물 앵커볼트의 선제적/능동적 유지관리가 가능한 기술로 연구개발 및 실용화가 시급하다. 본 논문에서는 비파괴 검사 기법 중 초음파탐상법(Ultrasonic test)을 적용하여 부식, 균열 등 앵커볼트의 결함 검출 가능성 및 실뢰도를 실험적으로 검증하였다. 기술 개발이 완성되면 검사 신뢰성 향상 원천기술 확보로 앵커볼트에 대한 선제적/능동적 유지관리의 실현이 가능할 것으로 기대된다.

수중용 선체외판 길함 검사용 장치 개발 (An Underwater Inspection System to Detect Hull Defects of a Ship)

  • 김영진;조영준;이강원;손웅희
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.281-284
    • /
    • 2006
  • After building a ship in a shipyard, there are so many repeated inspection of welding seam defects and painting status before delivering to the ship's owner. An inspection on the bottom part of a ship in commercial service should be done in every two years for the purpose of safety and for the prevention of ship speed deterioration. conventional welding seam inspection systems are rely on the visual inspection by human or the ultrasonic inspection for the selective part of a ship. This paper suggests a remote controlled inspection system for the examination of large ships or steel structures. The proposed system moves in contact with the ship under inspection and have a CCD camera to provide visual-guidance information to a remotely located human worker. Additionally this system utilizes a weld line tracking algorithm for an optimal position control. We verified the effectiveness of the inspection system by experimental data.

  • PDF

Intelligentization of Landscape Bamboo Buildings Based on Visual Data Transmission and 5G Communication

  • ke Yu Kai
    • International Journal of Advanced Culture Technology
    • /
    • 제11권1호
    • /
    • pp.389-394
    • /
    • 2023
  • Based on intelligent visual information and 5G, this paper studies the intelligent visual communication of landscape bamboo buildings, and provides a new method of intelligent perception and interactive computing for the real world, which can represent, model, Perception and cognition; through the integration of virtual and real, the situational understanding of the human-machine-material fusion environment and the interaction with nature. The 5G network can well meet the combination of high-bandwidth uplink transmission and low-latency downlink control. At the same time, 5G-based AR intelligent inspection, remote operation and maintenance guidance, and machine vision inspection. Taking the bamboo building as an example, through field inspections to analyze tourism Bamboo buildings before and after development, and the intelligentization of bamboo buildings based on 5G and visual modeling.

BIM and Thermographic Sensing: Reflecting the As-is Building Condition in Energy Analysis

  • Ham, Youngjib;Golparvar-Fard, Mani
    • Journal of Construction Engineering and Project Management
    • /
    • 제5권4호
    • /
    • pp.16-22
    • /
    • 2015
  • This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. Several case studies were conducted to experimentally evaluate their impact on BIM-based energy analysis to calculate energy load. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.

Updating BIM: Reflecting Thermographic Sensing in BIM-based Building Energy Analysis

  • Ham, Youngjib;Golparvar-Fard, Mani
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.532-536
    • /
    • 2015
  • This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.

  • PDF