International Journal of Computer Science & Network Security
/
제22권10호
/
pp.73-82
/
2022
Early detection continues to be the mainstay of breast cancer control as well as the improvement of its treatment. Even so, the absence of cancer symptoms at the onset has early detection quite challenging. Therefore, various researchers continue to focus on cancer as a topic of health to try and make improvements from the perspectives of diagnosis, prevention, and treatment. This research's chief goal is development of a system with deep learning for classification of the breast cancer as non-malignant and malignant using mammogram images. The following two distinct approaches: the first one with the utilization of patches of the Region of Interest (ROI), and the second one with the utilization of the overall images is used. The proposed system is composed of the following two distinct stages: the pre-processing stage and the Convolution Neural Network (CNN) building stage. Of late, the use of meta-heuristic optimization algorithms has accomplished a lot of progress in resolving these problems. Teaching-Learning Based Optimization algorithm (TIBO) meta-heuristic was originally employed for resolving problems of continuous optimization. This work has offered the proposals of novel methods for training the Residual Network (ResNet) as well as the CNN based on the TLBO and the Genetic Algorithm (GA). The classification of breast cancer can be enhanced with direct application of the hybrid TLBO- GA. For this hybrid algorithm, the TLBO, i.e., a core component, will combine the following three distinct operators of the GA: coding, crossover, and mutation. In the TLBO, there is a representation of the optimization solutions as students. On the other hand, the hybrid TLBO-GA will have further division of the students as follows: the top students, the ordinary students, and the poor students. The experiments demonstrated that the proposed hybrid TLBO-GA is more effective than TLBO and GA.
본 논문에서는 단일 프레임 지도 시간적 행동 지역화에서 1D 합성곱 층의 커널 사이즈 변화를 제안한다. 본 논문에서는 두 개의 1D 합성곱 층의 커널 사이즈를 각각 3과 1을 사용하는 기존 방법을 기반으로, 각각의 1D 합성곱 층의 커널 사이즈를 변화시키는 방법을 제안하였다. 제안하는 방법의 효율성을 검증하기 위하여 THUMOS'14 데이터셋을 활용하여 비교실험을 수행하였다. 또한 성능 평가를 위해 전체 비디오에 대한 분류 정확도(Accuracy), mAP(mean Average Precision) 그리고 Average mAP를 성능 지표로 사용하였다. 본 논문의 실험 결과에 따르면 제안하는 방법이 기존 방법보다 더 정확한 mAP와 Average mAP를 제공할 수 있음을 관찰하였다. 또한 커널 사이즈를 7과 1로 변화시킨 방법이 전체 비디오에 대한 분류 정확도에서 8.0% 개선된 것을 확인할 수 있었다.
본 연구에서는 토목분야의 다양한 상용 BIM 모델링 설계 소프트웨어의 사용자들에게 상호 호환성과 상호 운용성을 보장하기 위해 BIM 국제 표준 파일 포맷인 IFC 파일로의 파일 변환 프로세스를 새롭게 설계하여 제시한다. 제안된 프로세스는 상용 BIM 모델링 소프트웨어를 위한 add-in 방식의 컨버터(Converter)를 사용하여, 변환되는 IFC 파일의 3차원 객체 형상 정보에 수량 산출식 코드 속성과 토목 분야 CBS/OBS/WBS 표준분류체계 속성으로 구성되는 추가적인 속성들을 삽입한다. 또한, 개방형(Open) 웹 기반 수량, 공정(4D) 및 공사비(5D) 관리를 위한 IFC 파일의 통합 활용 프로세스를 추가로 설계하고 구축한다. 이러한 작업을 통해 토목 분야의 BIM 모델링 설계 단계에서 최종적인 시공 단계에 이르는 개방형 웹 기반 수량, 공정(4D) 및 공사비(5D)의 연계적 활용에 대한 새로운 프로세스를 제시하는 것이 본 연구의 궁극적인 목적이다.
합성수지 거푸집은 내부식성이 우수한 경량의 고밀도 폴리에틸렌(HDPE)를 재료로 사용한다. 합성수지 거푸집의 전과정 평가를 위하여 ISO FDIS 13352에서 요구하는 시스템 경계를 만족하도록 공정 흐름도를 고려하였다. 이에 따라 고려된 시스템 경계는 Cradle-to- Product shipmen이다. 고려된 시스템 경계에서 투입 에너지원, 사용재료, 운송수단, 제작공정 등으로부터 산정한 전과정 목록(LCI) 데이터베이스를 분석하였다. 합성수지 거푸집의 LCI 데이터 분석으로 부터 환경부의 환경영향평가지수 방법론에 기반하여 분류화, 정규화, 특성화 및 가중치 과정을 거쳐 환경영향평가를 수행하고, 그 결과는 유로폼의 환경영향 평가값과 비교하였다. 실험결과, 전용횟수를 고려한 CO2 배출량은 유로폼 대비 2배 이상의 전용성을 갖는 합성수지 거푸집이 약 32 % 가량 낮았다. 이는 합성수지 거푸집 사용은 유로폼 대비 자재 생산을 1/2로 줄일 수 있으며, CO2 배출량 저감으로 이어질 수 있다.
The objective of this study is the classification of priority areas for the implementation of green roof by evaluating environmental deterioration in Seoul. Non-permeable pavement, air pollution, habitual floods, energy use, heat island and green space are considered in this assessment indicators. The expert questionnaire survey was conducted in order to determine the most important indicators. These indicators were then, thoroughly evaluated. As a result, high priority areas for the implementation of green roof were deduced in the following order of the districts : Jung, Sungdong, Jungrang, Youngdungpo, Jongro and Kangnam. The highest priority areas were determined to be crowded business-commercial areas. Low priority areas are analyzed in the following order of the districts : Kwanak, Nowon, Seocho and Dobong. The result of this study can be utilized for environmental planning and decision of related policies. Additionally, it can be promoted that awareness of implementing green roof of citizens, policy makers and building owners and effect of green networking between inside and outside Seoul can be increased.
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
/
pp.868-871
/
2006
Mortality of domestic people from cardiovascular disease ranked second, which followed that of from cancer last year. Therefore, it is very important and urgent to enhance the reliability of medical examination and treatment for cardiovascular disease. Heart Rate Variability (HRV) is the most commonly used noninvasive methods to evaluate autonomic regulation of heart rate and conditions of a human heart. In this paper, our aim is to extract a quantitative measure for HRV to enhance the reliability of medical examination for cardiovascular disease, and then develop a prediction method for extracting multi-parametric features by analyzing HRV from ECG. In this study, we propose a hybrid Bayesian classifier called FP-based Bayesian. The proposed classifier use frequent patterns for building Bayesian model. Since the volume of patterns produced can be large, we offer a rule cohesion measure that allows a strong push of pruning patterns in the pattern-generating process. We conduct an experiment for the FP-based Bayesian classifier, which utilizes multiple rules and pruning, and biased confidence (or cohesion measure) and dataset consisting of 670 participants distributed into two groups, namely normal and patients with coronary artery disease.
Typically, the ultrasonic sensors can be used in navigation systems for modeling of the enviornment, obstacle avoidance, and map building. In this paper, we tried to approach an object classification method using the range data of the ultrasonic sensors. A characterization of the sonar scan is described that allows the differentiation of planes, corners, edges, cylindrical and rectangular pillars by processing the scanned data from three sonars. To use the data from the ultrasonic sensors as input to the neural networks, we have introduced a clustering, threshold, and bit operation algorithm for the obtained raw data, After repeated training of the neural network, the performance of the proposed method was obtained through experiments. Also, the recognition ranges of the proposed method were investigated. As a result of experiments, we found that the proposed method successfully recognized the objects within the accuracy of 78%.
The objective of this study is to improve the quality of the atmospheric environment by incorporating the factors of meteorology and urban climate into the field of urban and environmental planning. To this end, we have conducted a study on CLIMATOP and the mapping of urban climate, which are basic data used to analyze changes in climatic factors and the stagnation and accumulation of air pollutants. In particular, we focused on understanding the formation and movement of cold fresh air and its influx into urban areas by measuring and analyzing climatic factors. As a study result, classification criteria far CLIMATOP and a urban climatic map were made. In addition, we analyzed a digital elevation model, climatic data, and isothermal curves. As a result, we identified the corridor through which cold fresh air moves. We also observed that the temperature of the fluxed cold fresh air increased as land use changed. When the results of this study are applied to urban re-development and re-building projects, which require preliminary environmental assessment and environmental impact assessment, the practice proposed by this study is expected to contribute to the natural purification of air pollution activating the movement of cold fresh air and its influx into urban areas.
With the arrival of the big data era, customer data and data mining analysis have gradually dominated the process of Customer Relationship Management (CRM). This phenomenon indicates that customer data along with the use of information techniques (IT) have become the basis for building a successful CRM strategy. However, some companies can not discover valuable information through a large amount of customer data, which leads to the failure of making appropriate business strategy. Without suitable strategies, the companies may lose the competitive advantage or probably go bankrupt. The purpose of this study is to propose CRM strategies by segmenting customers into VIPs and Non-VIPs and identifying purchase patterns using the the VIPs' transaction data and data mining techniques (K-means clustering and association rules) of online shopping mall in Korea. The results of this paper indicate that 227 customers were segmented into VIPs among 1866 customers. And according to 51,080 transactions data of VIPs, home product and women wear are frequently associated with food, which means that the purchase of home product or women wears mainly affect the purchase of food. Therefore, marketing managers of shopping mall should consider these shopping patterns when they build CRM strategy.
Detecting cracks on a concrete structure is crucial for structural maintenance, a crack being an indicator of possible damage. Conventional crack detection methods which include visual inspection and non-destructive equipment, are typically limited to a small region and require time-consuming processes. Recently, to reduce the human intervention in the inspections, various researchers have sought computer vision-based crack analyses: One class is filter-based methods, which effectively transforms the image to detect crack edges. The other class is using deep-learning algorithms. For example, convolutional neural networks have shown high precision in identifying cracks in an image. However, when the objective is to classify not only the existence of crack but also the types of cracks, only a few studies have been reported, limiting their practical use. Thus, the presented study develops an image processing procedure that detects cracks and classifies crack types; whether the image contains a crazing-type, single crack, or multiple cracks. The properties and steps in the algorithm have been developed using field-obtained images. Subsequently, the algorithm is validated from additional 227 images obtained from an open database. For test datasets, the proposed algorithm showed accuracy of 92.8% in average. In summary, the developed algorithm can precisely classify crazing-type images, while some single crack images may misclassify into multiple cracks, yielding conservative results. As a result, the successful results of the presented study show potentials of using vision-based technologies for providing crack information with reduced human intervention.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.