• Title/Summary/Keyword: building technology

Search Result 7,883, Processing Time 0.034 seconds

Semi Automatic Building Segmentation using Balloons from 1m Resolution Aerial Images

  • Yoon, Tae-Hun;Kim, Tae-Jung;Lee, Heung-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.246-251
    • /
    • 1998
  • This paper proposes a new building segmentation method from 1m resolution imagery using an Active Contour Model, known as "Balloons". The original balloons, which was designed by Cohen(Cohen, 1991) to extract features from medical images, are modified for building segmentation. The proposed method consists of two phases. Firstly, building boundaries are extracted by balloons with a given position on buildings from an operator. Since balloons actively adjust their shapes according to the boundaries, there is no more shape limitations on detecting buildings. Secondly, buildings are segmented by connecting the corners detected from the building boundaries, because most buildings, which are man-made objects, are effectively described by polygons. The test results show that most buildings are segmented efficiently and easily. The proposed method is new and timely as 1m resolution spaceborne imagery will be available in the very near future. The proposed method can be used fur operational building segmentation from such imagery.

  • PDF

Research and Development of RFIC Technology in Smart Temperature Information Material

  • Chang, Chih-Yuan;Hung, San-Shan;Chang, Yu-Chueh;Peng, Yu-Fang
    • Journal of Construction Engineering and Project Management
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Conservation of energy and fuel is the trend in smart building design. Radio Frequency Integrated Circuit (RFIC) technology is often used in temperature sensing and signal transmission to manage indoor temperature, but it is rarely applied to the shell of the building. Heat retention and poor insulation in building shells are the largest causes of high energy consumption by indoor air conditioning. Through combining RFIC technology with temperature sensors, this study will develop smart temperature information material that can be embedded in concrete. In addition to accurately evaluating the effectiveness of shell insulation material, the already-designed Building Physiology Information System can monitor long-term temperature changes, leading to smarter building health management.

Optimization of productivity in the rehabilitation of building linked to BIM

  • Boulkenafet Nabil;Boudjellal Khaled;Bouabaz Mohamed
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.179-190
    • /
    • 2023
  • In this paper, building information modelling (BIM) associated to the principle of significant items emerged at quantities and costs in the optimization of productivity related to the rehabilitation of the building where proposed and discussed. A quantitative and qualitative study related to the field of application based on some parameters such as pathology diagnosis, projects documents and bills of quantities were used for model development at the preliminary stage of this work. The study identified 14 quantities significant items specified to cost value based on the use of the 80/20 Pareto rule, through the integration of building information modelling (BIM) in the optimisation of labour productivity for rehabilitation of buildings. The results of this study reveal the reliability and the improvement of labour productivity using building information modelling process integrating quantities and cost significant items.

RESEARCH AND DEVELOPMENT OF RFIC TECHNOLOGY IN SMART TEMPERATURE INFORMATION MATERIAL

  • Chih-Yuan Chang;San-Shan Hung;Yu-Chueh Chang;Yu-Fang Peng
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.480-486
    • /
    • 2011
  • Conservation of energy and fuel is the trend in smart building design. Radio Frequency Integrated Circuit (RFIC) technology is often used in temperature sensing and signal transmission to manage indoor temperature, but it is rarely applied to the shell of the building. Heat retention and poor insulation in building shells are the largest causes of high energy consumption by indoor air conditioning. Through combining RFIC technology with temperature sensors, this study will develop smart temperature information material that can be embedded in concrete. In addition to accurately evaluating the effectiveness of shell insulation material, the already-designed Building Physiology Information System can monitor long-term temperature changes, leading to smarter building health management.

  • PDF

Evaluation of Condensation Prevention for Centralized Hybrid Ventilation System Using TDR (TDR을 이용한 중앙집중형 하이브리드 환기시스템의 결로방지 성능 평가)

  • Kim, Yu-Min;Lee, Jong-Eun;Choi, Gyeong-Seok;Lee, Yong-Jun;Kang, Jae-Sik
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.81-86
    • /
    • 2015
  • Purpose: Condensation in the apartment housing is one of the most significant defects and complaints for condensation are rapidly increasing according to the growing interest in residential environment. Korea government established a regulation for reducing condensation in the apartment housing and TDR is adapted as a standard. However prevention of condensation depend on improving the performance of building envelop has limitation because of the increase of the cost. Centralized Hybrid ventilation system is suggested to prevent condensation. Method: Field measurement was conducted to verify the ventilation rate of the ventilation system. Based on the measurement, air network and CFD simulation was conducted to analyze ventilation rate for each room. Surface temperature was calculated by regulated TDR according to the regions and surfaces. The performance of condensation prevention was evaluated by the ventilation rate and surface temperature. Result: In the results, it was found that condensation was prevented in more than 90% of households by the centralized hybrid ventilation system which provided 0.19 ~ 0.81ACH for each room.

Investigation of effects of twin excavations effects on stability of a 20-storey building in sand: 3D finite element approach

  • Hemu Karira;Dildar Ali Mangnejo;Aneel Kumar;Tauha Hussain Ali;Syed Naveed Raza Shah
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.427-443
    • /
    • 2023
  • Across the globe, rapid urbanization demands the construction of basements for car parking and sub way station within the vicinity of high-rise buildings supported on piled raft foundations. As a consequence, ground movements caused by such excavations could interfere with the serviceability of the building and the piled raft as well. Hence, the prediction of the building responses to the adjacent excavations is of utmost importance. This study used three-dimensional numerical modelling to capture the effects of twin excavations (final depth of each excavation, He=24 m) on a 20-storey building resting on (4×4) piled raft. Because the considered structure, pile foundation, and soil deposit are three-dimensional in nature, the adopted three-dimensional numerical modelling can provide a more realistic simulation to capture responses of the system. The hypoplastic constitutive model was used to capture soil behaviour. The concrete damaged plasticity (CDP) model was used to capture the cracking behaviour in the concrete beams, columns and piles. The computed results revealed that the first excavation- induced substantial differential settlement (i.e., tilting) in the adjacent high-rise building while second excavation caused the building tilt back with smaller rate. As a result, the building remains tilted towards the first excavation with final value of tilting of 0.28%. Consequently, the most severe tensile cracking damage at the bottom of two middle columns. At the end of twin excavations, the building load resisted by the raft reduced to half of that the load before the excavations. The reduced load transferred to the piles resulting in increment of the axial load along the entire length of piles.

VIRTUAL CONSTRUCTION OF TRANSFER FLOORS IN REINFORCED CONCRETE BUILDING USING BIM

  • Kwangho So;Bohwan Oh;Yongjik Lee;Hyungeun Lee;Taehun Ha
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.12-16
    • /
    • 2011
  • Building Information Modeling (BIM) is being widely spread in AEC industry worldwide and also in South Korea. Although the creation of digital model is better to be started at design stage, it can also improve the productivity of construction by simulating the actual construction process and environment. This paper presents application of BIM-based simulations related with design changes to transfer floors in 58-storey reinforced concrete office building. Transfer floor is not only a structurally important part of the building but also a challenging part of the actual construction in terms of sequence and period due to the complexity of the work. Preconstruction of rebar, mechanical, and plumbing is performed to review the construction drawings and to perform clash detection. Each item of application is evaluated for its effectiveness on actual construction and for the development potential.

  • PDF

The Research and Application of Innovative High Efficient Construction Technologies in Super High Rise Steel Structure Building

  • Dai, Lixian;Liao, Biao
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.205-214
    • /
    • 2014
  • The super high rise building construction is characterized by a large quantity of engineering works and structural components, high demanding of construction technology and complex cross operations. As the height of super high rise building increases, the construction difficulties increase, it is challenging the steel structural building construction technology. In this paper, the key technologies in the construction of Chinese modern super high rise steel structure building have been studied. The innovative tower crane supporting frame suspension disassembly technology has been developed to allow the crane supporting frame to turnover in the air without occupying materials stockyard. A new self-elevating platform technique which is capable of striding over structural barriers has been developed. This new technology allows the platform to be self-elevated along variable cross section column with a maximum 600 mm size change. A new automatic submerged arc welding technology has also been developed to ensure the process continuity and quality stability of welding job on the construction site.

Seismic fragility analysis of shield building considering strength ratio of mainshock and aftershocks

  • Xue Zhang;Chunfeng Zhao;Lunhai Zhi;Rui Pang;Y.L. Mo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3397-3404
    • /
    • 2024
  • The shield building of the AP1000 nuclear power plant serves as a crucial protective barrier against radioactive substances. However, past research indicates that structures are susceptible to experiencing aftershocks, which may lead to unforeseeable damage and potential radioactive material leakage. To address this issue, a finite element model of the shield building was established with the damage indexes of the tensile and compressive damage selected for further model analysis. According to the fundamental theory of reliability, the traditional incremental dynamic analysis method was used to analyze the seismic fragility of the shield building by inputting mainshock and aftershock sequences with three strength ratios. The results indicate that the seismic fragility of shield building may be underestimated without considering the influence of aftershocks and the damage state presents an upward tendency as the strength ratio increases. However, the cumulative damage caused by aftershocks is unlikely to exceed the initial damage induced by the corresponding mainshock. Overall, the aggravation of the compressive damage is less pronounced than the increase of the tensile damage as the strength ratio increases.

Priority Analysis for Development of Virtual Reality Contents to Improve Building Construction Education (건축시공 교육 개선을 위한 가상현실 컨텐츠 개발 우선순위 도출)

  • Kang, Seo-Kyoung;Kang, Goune;Cho, Hunhee;Kang, Kyung-In;Kang, Minshik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.93-94
    • /
    • 2015
  • Building construction education requires training and experience. While there have been many means of education, virtual reality (VR) can be applied as a complement for building construction education. Considering the characteristics of building construction education, interactive content based on VR technology is expected to raise the effectiveness of traditional education. This research conducted a survey to examine the applicability of VR technology to building construction education and provided basic information by prioritizing work types for educational content.

  • PDF