• Title/Summary/Keyword: building geometry

Search Result 241, Processing Time 0.022 seconds

Scan-to-Geometry Mapping Rule Definition for Building Plane Reverse engineering Automation (건축물 평면 형상 역설계 자동화를 위한 Scan-to-Geometry 맵핑 규칙 정의)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.21-28
    • /
    • 2019
  • Recently, many scan projects are gradually increasing for maintenance, construction. The scan data contains useful data, which can be generated in the target application from the facility, space. However, modeling the scan data required for the application requires a lot of cost. In example, the converting 3D point cloud obtained from scan data into 3D object is a time-consuming task, and the modeling task is still very manual. This research proposes Scan-to-Geometry Mapping Rule Definition (S2G-MD) which maps point cloud data to geometry for irregular building plane objects. The S2G-MD considers user use case variability. The method to define rules for mapping scan to geometry is proposed. This research supports the reverse engineering semi-automatic process for the building planar geometry from the user perspective.

Modeling Method of the TRNSYS Considering of a Building Geometry (건물의 기하학적 형태를 고려한 TRNSYS 모델링 방법)

  • Lee, Jae-Hyuk;Choi, Won-Ki;Suh, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.21-26
    • /
    • 2009
  • TRNSYS 16 had just a wall area and azimuth as an input value about a building shape. So, a geometrical shape of a building was not considered in simulation using TRNSYS 16. In this study, we suggested the more appropriate modeling method for simulation considering of building geometry in TRNSYS 16. To suggest this method, we simulated energy needs affected by shading effect that caused by a geometrical shape of a building, and compared the result to the simulation result of non-shading environment.

  • PDF

Spatial and temporal distribution of driving rain on a low-rise building

  • Blocken, Bert;Carmeliet, Jan
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.441-462
    • /
    • 2002
  • This paper presents a practical numerical method to determine both the spatial and temporal distribution of driving rain on buildings. It is based on an existing numerical simulation technique and uses the building geometry and climatic data at the building site as input. The method is applied to determine the 3D spatial and temporal distribution of wind-driven rain on the facade a low-rise building of complex geometry. Distinct wetting patterns are found. The important causes giving rise to these particular patterns are identified : (1) sweeping of raindrops towards vertical building edges, (2) sweeping of raindrops towards top edges, (3) shelter effect by various roof overhang configurations. The comparison of the numerical results with full-scale measurements in both space and time for a number of on site recorded rain events shows the numerical method to yield accurate results.

The Preliminary Design Guideline for Tall Building: Exploration of Planning Factors & Building Factors

  • Choi, Yong Sun
    • Architectural research
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Every year new tall buildings are being conceived, designed, and built with new schemes. Thus it is important to explore the factors that affect tall building design. Thus it is important to explore the tall building design factors. The planning and design of tall buildings require different criteria than those that exist in regular size buildings. Tall buildings are uniquely expressed by their structural systems where exterior esthetic and requirements of space drive the form and composition of the structural systems. Therefore the exploration of design factors is the key to achieve optimum building systems. Optimization as mentioned here is associated with the efficiency of the different building systems. To achieve an optimal system, there is a need for an understanding of the factors that affect on overall tall building design such as planning module, building function, lease span, floor-to-floor-height, building height (aspect ratio), structural system, environmental systems. In this paper a statistical approach will be used and will be based on data collected from the practice through a rigorous survey taken. This information is tabulated and analyzed. The major target of investigation will be lease span related to space requirement in the tall building planning. Factors related to lease spans, such as function, floor-to-floor height, planning module, building height, overall plan dimension, and plan ratio (building geometry), will be looked at carefully. IN conclusion, this approach of optimization can introduce a preliminary design guideline for tall building projects. The purpose of the paper should shed some light on the optimum tall building design criteria.

The development of module for automatic extraction and database construction of BIM based shape-information reconstructed on spatial information (공간정보를 중심으로 재구성한 BIM 기반 형상정보의 자동추출 및 데이터베이스 구축 모듈 개발)

  • Choi, Jun-Woo;Kim, Shin;Song, Young-hak;Park, Kyung-Soon
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.81-87
    • /
    • 2018
  • In this paper, in order to maximize the input process efficiency of the building energy simulation field, the authors developed the automatic extraction module of spatial information based BIM geometry information. Existing research or software extracts geometry information based on object information, but it can not be used in the field of energy simulation because it is inconsistent with the geometry information of the object constituting the thermal zone of the actual building model. Especially, IFC-based geometry information extraction module is needed to link with other architectural fields from the viewpoint of reuse of building information. The study method is as follows. (1) Grasp the category and attribute information to be extracted for energy simulation and Analyze the IFC structure based on spatial information (2) Design the algorithm for extracting and reprocessing information for energy simulation from IFC file (use programming language Phython) (3) Develop the module that generates a geometry information database based on spatial information using reprocessed information (4) Verify the accuracy of the development module. In this paper, the reprocessed information can be directly used for energy simulation and it can be widely used regardless of the kind of energy simulation software because it is provided in database format. Therefore, it is expected that the energy simulation process efficiency in actual practice can be maximized.

BIM Geometry Cache Structure for Data Streaming with Large Volume (대용량 BIM 형상 데이터 스트리밍을 위한 캐쉬 구조)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.1-8
    • /
    • 2017
  • The purpose of this study is to propose a cache structure for processing large-volume building information modeling (BIM) geometry data,whereit is difficult to allocate physical memory. As the number of BIM orders has increased in the public sector, it is becoming more common to visualize and calculate large-volume BIM geometry data. Design and review collaboration can require a lot of time to download large-volume BIM data through the network. If the BIM data exceeds the physical free-memory limit, visualization and geometry computation cannot be possible. In order to utilize large amounts of BIM data on insufficient physical memory or a low-bandwidth network, it is advantageous to cache only the data necessary for BIM geometry rendering and calculation time. Thisstudy proposes acache structure for efficiently rendering and calculating large-volume BIM geometry data where it is difficult to allocate enough physical memory.

Development of Energy Optimized Geometry Using BIM for Super Tall Office Building in Early Design Stages (BIM을 이용한 건축물 초기 디자인 단계에서 초고층 업무용 건물의 최적 에너지 형태개발)

  • Ryu, Han-Soo;Kim, In-Han;Choo, Seung-Yeon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.2
    • /
    • pp.83-91
    • /
    • 2011
  • There are many researches to make low-energy building. Lots of them focus on facility systems and insulation performance of building materials. However, not only systematic solutions but also approaches in early design stages are important to reduce energy consumption. Using BIM(Building Information Modelling) is considered as an effective and efficient way to simulate building energy and decide alternatives than traditional energy simulation because BIM based energy simulation makes to reduce much time for energy modeling. This study focuses on development of optimized geometry for super tall office buildings in Seoul, Korea. Specifically, length to width ratio and building orientation are main topics of this study because these two topics are the most basic and preceding factors deciding mass design. In this study, Revit MEP 2011 and Ecotect Analysis 2011 are used to make case models and calculate energy load in early design stages. Energy properties of material abide by Korean Standards for Energy Conservation in Building, Korean Guideline for Energy Conservation in Public Office and ASHRAE Standard in USA. This study presents best length to width ratio of plan and optimized orientation by evaluating the case models. Furthermore, this study suggests what should be considered for each case to decrease energy load.

Research on the Teaching Building-blocks in Elementary Geometry Class using 3D Visualization SW (3D Visualization SW를 활용한 초등학교 쌓기나무 도형교육에 관한 연구)

  • Bae, Hun Joong;Kim, Jong-seong
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.6
    • /
    • pp.71-80
    • /
    • 2017
  • The standards for achievement levels for building blocks in elementary geometry class is to enhance spatial cognitive ability through practices describing shape patterns of building blocks observed from different directions. However, most of building block in the textbook is described from only one perspective. Even worse, some examples in the textbook are almost impossible to observe in the real world. Contrary to this, simulated views by Wings3D has shown that each box may look quite differently from different angles let alone the size of each box. Using Wings3D, it is also very easy to build different types of building blocks with various levels of difficulty in the virtual space. Based on these results, in this study, 3D visualization SW is suggested as a potential pedagogical tool for the elementary geometry class to help kids perceive objects in space more precisely. We have shown that 3D visualization SW such as Wings3D could be a powerful, compact 3D SW for most of subjects which are covered in elementary geometry education. Wings3D has another advantage of economic open source SW fully compatible with school PCs.

Schematic Estimation Process for Finishing Work using 3D Geometry-Knowledge Information (3차원 형상·지식정보를 활용한 마감공사 개산견적 프로세스)

  • Park, Sang-Hun;Park, Hyung-Jin;Koo, Kyo-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.210-212
    • /
    • 2013
  • The construction cost estimates during the design phase becomes the standard to judge profitability and validity, and is very important in various decision-makings by project owner. However, since approximate costs are quoted when many parts are undecided in the early stage of project, differences are bound to occur between the construction cost calculated through approximate quotation and that put into construction actually. Also, since in existing quotation works, quantity calculations have been dependent on the staff's manual work, involving error potential, and thus differences are likely in quantity calculation depending on the quotation staff's method of calculation. In this study, the process of creating space model to deduce 3D geometry information for approximate quotation in association with knowledge information and the expression for calculation of finishing area were proposed.

  • PDF

Application of artificial neural networks for dynamic analysis of building frames

  • Joshi, Shardul G.;Londhe, Shreenivas N.;Kwatra, Naveen
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.765-780
    • /
    • 2014
  • Many building codes use the empirical equation to determine fundamental period of vibration where in effect of length, width and the stiffness of the building is not explicitly accounted for. In the present study, ANN models are developed in three categories, varying the number of input parameters in each category. Input parameters are chosen to represent mass, stiffness and geometry of the buildings indirectly. Total numbers of 206 buildings are analyzed out of which, data set of 142 buildings is used to develop these models. It is demonstrated through developed ANN models that geometry of the building and the sizes of the columns are significant parameters in the dynamic analysis of building frames. The testing dataset of these three models is used to obtain the empirical relationship between the height of the building and fundamental period of vibration and compared with the similar equations proposed by other researchers. Experiments are conducted on Mild Steel frames using uniaxial shake table. It is seen that the values obtained through the ANN models are close to the experimental values. The validity of ANN technique is verified by experimental values.