• Title/Summary/Keyword: building geometric modeling

Search Result 63, Processing Time 0.02 seconds

3-Dimensional Building Reconstruction with Airborne LiDAR Data

  • Lee, Dong-Cheon;Yom, Jae-Hong;Kwon, Jay-Hyoun;We, Gwang-Jae
    • Korean Journal of Geomatics
    • /
    • v.2 no.2
    • /
    • pp.123-130
    • /
    • 2002
  • LiDAR (Light Detection And Ranging) system has a profound impact on geoinformatics. The laser mapping system is now recognized as being a viable system to produce the digital surface model rapidly and efficiently. Indeed the number of its applications and users has grown at a surprising rate in recent years. Interest is now focused on the reconstruction of buildings in urban areas from LiDAR data. Although with present technology objects can be extracted and reconstructed automatically using LiDAR data, the quality issue of the results is still major concern in terms of geometric accuracy. It would be enormously beneficial to the geoinformatics industry if geometrically accurate modeling of topographic surface including man-made objects could be produced automatically. The objectives of this study are to reconstruct buildings using airborne LiDAR data and to evaluate accuracy of the result. In these regards, firstly systematic errors involved with ALS (Airborne Laser Scanning) system are introduced. Secondly, the overall LiDAR data quality was estimated based on the ground check points, then classifying the laser points was performed. In this study, buildings were reconstructed from the classified as building laser point clouds. The most likely planar surfaces were estimated by the least-square method using the laser points classified as being planes. Intersecting lines of the planes were then computed and these were defined as the building boundaries. Finally, quality of the reconstructed building was evaluated.

  • PDF

Curved Feature Modeling and Accuracy Analysis Using Point Cloud Data (점군집 데이터를 이용한 곡면객체 모델링 및 정확도 분석)

  • Lee, Dae Geon;Yoo, Eun Jin;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.243-251
    • /
    • 2016
  • LiDAR data processing steps include noise removal, filtering, classification, segmentation, shape recognition, modeling, and quality assessment. This paper focuses on modeling and accuracy evaluation of 3D objects with curved surfaces. The appropriate modeling functions were determined by analyzing surface patch shape. Existing methods for modeling curved surface features require linearization, initial approximation, and iteration of the non-linear functions. However, proposed method could directly estimate the unknown parameters of the modeling functions. The results demonstrate feasibility of the proposed method. The proposed method was applied to the simulated and real building data of hemi-spherical and semi-cylindrical surfaces. The parameters and accuracy of the modeling functions were estimated. It is expected that the proposed method would contribute to automatic modeling of various objects.

Network-centric CAD

  • Lee, Jae-Yeol;Kim, Hyun;Lee, Joo-Haeng;Do, Nam-Chul;Kim, Hyung-Sun
    • Proceedings of the CALSEC Conference
    • /
    • 2001.08a
    • /
    • pp.615-624
    • /
    • 2001
  • Internet technology opens up another domain for building future CAD/CAM environment. The environment will be global, network-centric, and spatially distributed. In this paper, we present a new approach to network-centric virtual prototyping (NetVP) in a distributed design environment. The presented approach combines the current virtual assembly modeling and analysis technique with distributed computing and communication technology fur supporting virtual prototyping activities over the network. This paper focuses on interoperability, shape representation, and geometric processing for distributed virtual prototyping. STEP standard and CORBA-based interfaces allow the bi-directional communication between the CAD model and virtual prototyping model, which makes it possible to solve the problems of interoperability, heterogeneity of platforms, and data sharing. STEP AP203 and AP214 are utilized as a means of transferring and sharing product models. In addition, Attributed Abstracted B-rep (AAB) is introduced as 3D shape abstraction for transparent and efficient transmission of 3D models and for the maintenance of naming consistency between CAD models and virtual prototyping models over the network.

  • PDF

Development of Mobile 3D Urban Landscape Authoring and Rendering System

  • Lee Ki-Won;Kim Seung-Yub
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.221-228
    • /
    • 2006
  • In this study, an integrated 3D modeling and rendering system dealing with 3D urban landscape features such as terrain, building, road and user-defined geometric ones was designed and implemented using $OPENGL\;{|}\;ES$ (Embedded System) API for mobile devices of PDA. In this system, the authoring functions are composed of several parts handling urban landscape features: vertex-based geometry modeling, editing and manipulating 3D landscape objects, generating geometrically complex type features with attributes for 3D objects, and texture mapping of complex types using image library. It is a kind of feature-based system, linked with 3D geo-based spatial feature attributes. As for the rendering process, some functions are provided: optimizing of integrated multiple 3D landscape objects, and rendering of texture-mapped 3D landscape objects. By the active-synchronized process among desktop system, OPENGL-based 3D visualization system, and mobile system, it is possible to transfer and disseminate 3D feature models through both systems. In this mobile 3D urban processing system, the main graphical user interface and core components is implemented under EVC 4.0 MFC and tested at PDA running on windows mobile and Pocket Pc. It is expected that the mobile 3D geo-spatial information systems supporting registration, modeling, and rendering functions can be effectively utilized for real time 3D urban planning and 3D mobile mapping on the site.

Suggestion on the Prototype of the Korean Barriers through the Investigation and Modeling of RC Protective Installments in Contact Areas (접적지역 RC형 방호시설 조사와 모델링을 통한 한국형 방호벽 설계안의 제시)

  • Park, Young Jun;Lee, Min Su;Lee, Hui Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.341-348
    • /
    • 2016
  • The aim of this study is to suggest design requirements on the military barriers which are installed to reduce critical damage on protective facilities against sudden pin-point attacks caused by North Korean artilleries. For this purpose, site investigation and review of design drawings associated with barriers built in the contact areas are conducted. With identified data concerning barriers, the geometric modeling, which is used in the structural analysis, is performed. And then, the possible threat of North Korea is determined based on intelligence preparation of battlefields. Once the structural modeling and threat analysis are completed, structural damage on barriers and protective facilities are assessed in terms of impact, penetration, scabbing, and blast pressure effects. According to the analysis results, the thickness of barriers should be 450mm at least and current established barriers need to be structurally reinforced via sectional enlargement.

Key Point Extraction from LiDAR Data for 3D Modeling (3차원 모델링을 위한 라이다 데이터로부터 특징점 추출 방법)

  • Lee, Dae Geon;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.479-493
    • /
    • 2016
  • LiDAR(Light Detection and Ranging) data acquired from ALS(Airborne Laser Scanner) has been intensively utilized to reconstruct object models. Especially, researches for 3D modeling from LiDAR data have been performed to establish high quality spatial information such as precise 3D city models and true orthoimages efficiently. To reconstruct object models from irregularly distributed LiDAR point clouds, sensor calibration, noise removal, filtering to separate objects from ground surfaces are required as pre-processing. Classification and segmentation based on geometric homogeneity of the features, grouping and representation of the segmented surfaces, topological analysis of the surface patches for modeling, and accuracy assessment are accompanied by modeling procedure. While many modeling methods are based on the segmentation process, this paper proposed to extract key points directly for building modeling without segmentation. The method was applied to simulated and real data sets with various roof shapes. The results demonstrate feasibility of the proposed method through the accuracy analysis.

Extracting Building Geomety from BIM for 3-D City Model (BIM으로부터 가상도시 구축용 건축물정보의 추출)

  • Goh, Il-Du;Choi, Joong-Hyun;Kim, E-Doo;Jeong, Yeon-Suk;Lee, Jae-Min
    • Spatial Information Research
    • /
    • v.16 no.2
    • /
    • pp.249-261
    • /
    • 2008
  • This study proposes a method for acquiring and managing basic information on building, which is continuously updated through construction and re-construction, in order to implement 3D-GIS based on geometric shape information and building information. First of all, distinctions between BIM and GIS information models are described, and then an overview of CityGML for virtual city and its Level of Detail are introduced. At last, a prototype for extracting building geometry from BIM data in accordance with CityGML is presented for demonstration. By using IFC data from BIM, this approach enables a lot of firms and contractors in building industry to utilize their 2D/3D, data on sites and buildings, and also to save many effects for generating exterior and interior building models which are inevitable for implementing National GIS.

  • PDF

3D Building Model Texture Extraction from Multiple Spatial Imagery for 3D City Modeling (3차원 도시모델 생성을 위한 다중 공간영상 기반 건물 모델 텍스쳐 추출)

  • Oh, Jae-Hong;Shin, Sung-Woong;Park, Jin-Ho;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.347-354
    • /
    • 2007
  • Since large portal service providers started web services for 3D city models around the world using spatial imagery, the competition has been getting intense to provide the models with the higher quality and accuracy. The building models are the most in number among the 3D city model objects, and it takes much time and money to create realistic model due to various shapes and visual appearances of building object. The aforementioned problem is the most significant limitation for the service and the update of the 3D city model of the large area. This study proposed a method of generating realistic 3D building models with quick and economical texture mapping using multiple spatial imagery such as aerial photos or satellite images after reconstructed geometric models of buildings from building layers in digital maps. Based on the experimental results, the suggested method has effectiveness for the generation of the 3D building models using various air-borne imagery and satellite imagery quickly and economically.

Utilizing Airborne LiDAR Data for Building Extraction and Superstructure Analysis for Modeling (항공 LiDAR 데이터를 이용한 건물추출과 상부구조물 특성분석 및 모델링)

  • Jung, Hyung-Sup;Lim, Sae-Bom;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.227-239
    • /
    • 2008
  • Processing LiDAR (Light Detection And Ranging) data obtained from ALS (Airborne Laser Scanning) systems mainly involves organization and segmentation of the data for 3D object modeling and mapping purposes. The ALS systems are viable and becoming more mature technology in various applications. ALS technology requires complex integration of optics, opto-mechanics and electronics in the multi-sensor components, Le. data captured from GPS, INS and laser scanner. In this study, digital image processing techniques mainly were implemented to gray level coded image of the LiDAR data for building extraction and superstructures segmentation. One of the advantages to use gray level image is easy to apply various existing digital image processing algorithms. Gridding and quantization of the raw LiDAR data into limited gray level might introduce smoothing effect and loss of the detail information. However, smoothed surface data that are more suitable for surface patch segmentation and modeling could be obtained by the quantization of the height values. The building boundaries were precisely extracted by the robust edge detection operator and regularized with shape constraints. As for segmentation of the roof structures, basically region growing based and gap filling segmentation methods were implemented. The results present that various image processing methods are applicable to extract buildings and to segment surface patches of the superstructures on the roofs. Finally, conceptual methodology for extracting characteristic information to reconstruct roof shapes was proposed. Statistical and geometric properties were utilized to segment and model superstructures. The simulation results show that segmentation of the roof surface patches and modeling were possible with the proposed method.

Development of Solution Algorithm for Multi-dimention Road Alignment Design Considering Low-Carbon (탄소저감형 다차원 도로선형설계를 위한 솔루션 알고리즘 개발)

  • Kang, Jeon-Yong;Shim, chang-su
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.11-22
    • /
    • 2015
  • Government efforts for green growth policy initiatives demand low-carbon technologies in the road construction industry. The purpose of this paper is to develop an algorithm of a road alignment design solution for establishing the multi-dimensional information, and to calculate carbon emission quantity due to the geometric design elements in the planning phase of road alignment. The paper developed a calculation method for carbon emission quantity by drawing a speed profile reflected in the operating speed, acceleration and deceleration, which are majors factor of carbon emissions while driving and by applying a carbon emission factor. From this effort, it enabled alignment planning to reduce carbon emission. Object-based parametric design methods of the cross-sections were proposed for alignment planning, and the paper demonstrated a BIM-based road alignment planning solution. The proposed solutions can provide multi-dimensional information on carbon emission quantity and cross section elements through driving simulation. It is expected to allow construction of eco-friendly roads by deriving optimal road alignment to minimize environmental costs.