• Title/Summary/Keyword: building direction

Search Result 1,306, Processing Time 0.024 seconds

Change of thermal environment in buildings by wind direction (풍향에 따른 건물군에서의 열환경 변화)

  • Kim, Sang-Jin
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.27-32
    • /
    • 2012
  • In recent years, the quality of the outdoor thermal environment has come to be regarded as important as that of the indoor thermal environment. Since the outdoor thermal environment is composed of many elements and is affected by many factors, it is not easy to evaluate the impact of each factor separately. Hence, a comprehensive assessment method is required. In order to evaluate the pedestrian level comfort of an outdoor climate, it is necessary to investigate not only wind velocity but also various physical elements, such as temperature, moisture, radiation, etc. Prediction of wind and thermal environment for a large scale buildings is one of the most important targets for research. Wind and thermal change in a city area is a very complicated phenomenon affected by many physical processes. The purpose of this study is to develop a design plan for wind environment at a large Buildings. In this study, we analyze outdoor wind environment and thermal environment on buildings using the CFD (Computational Fluid Dynamics) method. The arrangement of building models is an apartment in Jeonju. These prediction of wind and thermal environment for a large scale buildings is necessary in a plan before a building is built.

Seismic performance of a building base-isolated by TFP susceptible to pound with a surrounding moat wall

  • Movahhed, Ataallah Sadeghi;Zardari, Saeid;Sadoglu, Erol
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.87-100
    • /
    • 2022
  • Limiting the displacement of seismic isolators causes a pounding phenomenon under severe earthquakes. Therefore, the ASCE 7-16 has provided minimum criteria for the design of the isolated building. In this research the seismic response of isolated buildings by Triple Friction Pendulum Isolator (TFPI) under the impact, expected, and unexpected mass eccentricity was evaluated. Also, the effect of different design parameters on the seismic behavior of structural and nonstructural elements was found. For this, a special steel moment frame structure with a surrounding moat wall was designed according to the criteria, by considering different response modification coefficients (RI), and 20% mass eccentricity in one direction. Then, different values of these parameters and the damping of the base isolation were evaluated. The results show that the structural elements have acceptable behavior after impact, but the nonstructural components are placed in a moderate damage range after impact and the used improved methods could not ameliorate the level of damage. The reduction in the RI and the enhancement of the isolator's damping are beneficial up to a certain point for improving the seismic response after impact. The moat wall reduces torque and maximum absolute acceleration (MAA) due to unexpected enhancement of mass eccentricity. However, drifts of some stories increase. Also, the difference between the response of story drift by expected and unexpected mass eccentricity is less. This indicates that the minimum requirement displacement according to ASCE 7-16 criteria lead to acceptable results under the unexpected enhancement of mass eccentricity.

Effect of 5%Mg alloying in Al wire on corrosion resistance performance in saline solution (식염수에서 내식성 성능에 대한 Al 와이어의 5%Mg 합금 효과)

  • Singh, Jitendra Kumar;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.93-94
    • /
    • 2022
  • The presence of chloride (Cl-) ions in environments causes localized corrosion resulting decrease the durability of the structures. In this study, 5% Mg containing Al alloys (Al-5Mg) wire used vis-à-vis compared its corrosion resistance with pure Al in 3.5wt.% NaCl solution with exposure periods. Initially both wires exhibited identical open circuit potential (OCP) attributed to the presence of native oxide film on the surface but with the exposure periods it shifted towards active direction owing to the dissolution of oxide film. The pure Al continuously shifted the OCP towards active direction while Al-5Mg shows stabilization of OCP after 8 days of exposure. The OCP of Al-5Mg is slightly higher compared to pure Al wire owing to the activeness of Mg. The total impedance of the Al-5Mg alloy is almost three times greater than pure Al with exposure periods in 3.5 wt.% NaCl solution. It might be formation of Al-Mg LDH (layered double hydroxide) thin film onto the surface.

  • PDF

Evaluation of physical properties of Zn-Al metal spray coating according to concrete surface and treatment method (콘크리트 표면 처리 방법 및 용사면에 따른 Zn-Al 금속 용사 피막의 물리적 특성 평가)

  • Jang, Jong-Min;Yang, Hyun Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.59-60
    • /
    • 2022
  • When a metal sprayed film of several hundred ㎛ on the concrete surface is possible to 80 dB of shielding effect electromagnetic waves (ElectroMagnetic Pulse, EMP). Therefore, in this study, as a way to secure EMP shielding performance by applying a metal spray coating showing excellent EMP shielding performance to a concrete structure, the metal spray welding efficiency and thin film adhesion performance according to the concrete spray direction and surface treatment method were evaluated. Metal sprayed efficieny according to the metal spraying direction and method was confirmed that the difference was insignificant by applying the roughening agent. However, the method of strengthening the concrete surface and applying the sealing agent show maximum adhesion strength of 3.98 MPa compared to other methods, and it is judged that this method can be utilized for the metal spraying method for concrete EMP shielding.

  • PDF

The study for changes of plane at the Jeongjagak(丁字閣) accepting functions of the Yeongakjeon(靈幄殿) (조선후기 영악전(靈幄殿) 기능수용에 따른 정자각 평면변화 고찰)

  • Shin, Ji-Hye
    • Journal of architectural history
    • /
    • v.18 no.4
    • /
    • pp.7-23
    • /
    • 2009
  • The "Jeongjagak(丁字閣, T shaped building)" was important building from Goryeo Dynasty to Joseon Dynasty. For long period, the scale and form of the building had been changing bit by bit. The change of building results from the function. As the Jeongjagak accepted the functions of the Yeongakjeon(靈幄殿), there appeared changes of plane. The main function of Yeongakjeon was suppling space for the dead king's coffin. The Yeongakjeon was not built in the first year of King Sukjong(1674). At that time, the Jeongjagak was responsible for the function of the Yeongakjeon as an alternative. Starting from this, the Jeongjagak was used as space for the dead king's coffin. Because the coffin should place on from south to north, it demanded long inner space in south-north direction. Therefore the effort to make enough length in south-north direction was begun from the first year of King Sukjong(1674). In order to solve the problem, the Toigu(退構) was made from the reign of King Sukjong to the 28th year King Youngjo(1852). The Toigu was temporary inner space which was made in one compartment at the Baewichung(拜位廳, the part of the Jeongjagak). But the length of the Jeongjagak's south-north direction was reduced to 61.8m(20尺6寸) at the 33th year of King Youngjo(1857) when the "Gukjosangryebopyon(國朝喪禮補編)" was completed. Also it extended to 84m(28尺) during the reign of King Jeongjo(1774~1800). Following these process of extension and reduction, the length was standardized as 72m(24尺) at the reign of King Sunjo(1800~1834). These facts explains that the main cause of plane change at the Jeongjagak was acceptance of functions that was used as space for the dead king's coffin. Also, the important points of change at the Jeongjagak were the first year of King Sukjong, the 33th year of King Youngjo and the first year of King Sunjo. When it was the first year of King Sukjong and the 33th year of King Youngjo, there were two national funerals. Because of concern about the increasing labor and tax of the nation, the scale of the Jeongjagak was changed to decreasing size. Due to the improvement of drawings and annotation on a Eugwe(儀軌) at the first year of King Sunjo, the size of Jeongjagak was standardized.

  • PDF

A Study on Aerodynamic Damping and Aeroelastic Instability of Helical-shaped Super Tall Building (나선형 초고층건물의 공력불안정 진동과 공력감쇠에 관한 연구)

  • Kim, Wonsul;Yoshida, Akihito;Tamura, Yukio;Yi, Jin-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.95-103
    • /
    • 2016
  • In this paper, aeroelastic instability and aerodynamic damping ratio of a helical $180^{\circ}$ model which shows better aerodynamic behavior in both along-wind and crosswind responses on a super tall building was investigated by an aeroelastic model test, and the aerodynamic damping ratio was evaluated from the wind-induced responses of the model by using Random Decrement Technique. Aerodynamic damping ratios evaluated in this study were verified through comparison with previous results obtained by quasi-steady theory. As a result, the aeroelastic instability of the helical $180^{\circ}$ model in crosswind direction were not occurred for any conditions with increasing the reduced wind velocity while the square model generally encounters aeroinstability due to the vortex shedding. The aerodynamic damping in along-wind direction for the helical $180^{\circ}$ and the square model increased monotonically both with reduced wind velocity, i.e., there is no relation with modifications of building shapes. On the other hand, in crosswind direction, the characteristics of aerodynamic damping ratio with reduced wind velocity for helical $180^{\circ}$ model were quit different from those of the square model.

Impact by Estimation Error of Hourly Horizontal Global Solar Radiation Models on Building Energy Performance Analysis on Building Energy Performance Analysis

  • Kim, Kee Han;Oh, John Kie-Whan
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.3-10
    • /
    • 2014
  • Impact by estimation error of hourly horizontal global solar radiation in a weather file on building energy performance was investigated in this study. There are a number of weather parameters in a given weather file, such as dry-bulb, wet-bulb, dew-point temperatures; wind speed and direction; station pressure; and solar radiation. Most of them except for solar radiation can be easily obtained from weather stations located on the sites worldwide. However, most weather stations, also including the ones in South Korea, do not measure solar radiation because the measuring equipment for solar radiation is expensive and difficult to maintain. For this reason, many researchers have studied solar radiation estimation models and suggested to apply them to predict solar radiation for different weather stations in South Korea, where the solar radiation is not measured. However, only a few studies have been conducted to identify the impact caused by estimation errors of various solar radiation models on building energy performance analysis. Therefore, four different weather files using different horizontal global solar radiation data, one using measured global solar radiation, and the other three using estimated global solar radiation models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM) were packed into TRY formatted weather files in this study. These were then used for office building energy simulations to compare their energy consumptions, and the results showed that there were differences in the energy consumptions due to these four different solar radiation data. Additionally, it was found that using hourly solar radiation from the estimation models, which had a similar hourly tendency with the hourly measured solar radiation, was the most important key for precise building energy simulation analysis rather than using the solar models that had the best of the monthly or yearly statistical indices.

Peak seismic response of a symmetric base-isolated steel building: near vs. far fault excitations and varying incident angle

  • Pavlidou, Constantina;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.349-365
    • /
    • 2020
  • Since the peak seismic response of a base-isolated building strongly depends on the characteristics of the imposed seismic ground motion, the behavior of a base-isolated building under different seismic ground motions is studied, in order to better assess their effects on its peak seismic response. Specifically, the behavior of a typical steel building is examined as base-isolated with elastomeric bearings, while the effect of near-fault ground motions is studied by imposing 7 pairs of near- and 7 pairs of far-fault seismic records, from the same 7 earthquake events, to the building, under 3 different loading combinations, through three-dimensional (3D) nonlinear dynamic analyses, conducted with SAP2000. The results indicate that near-fault seismic components are more likely to increase the building's peak seismic response than the corresponding far-fault components. Furthermore, the direction of the imposed earthquake excitations is also varied by rotating the imposed pairs of seismic records from 0◦ to 360◦, with respect to the major construction axes. It is observed that the peak seismic responses along the critical incident angles, which in general differ from the major horizontal construction axes of the building, are significantly higher. Moreover, the influence of 5% and 10% accidental mass eccentricities is also studied, revealing that when considering accidental mass eccentricities the peak relative displacements of the base isolated building at the isolation level are substantially increased, while the peak floor accelerations and interstory drifts of its superstructure are only slightly affected.

Development Directions for Automated Layout System of Building Structures (건축물 골조공사용 먹매김 자동화 시스템 개발방향 연구)

  • Lim, Hyunsu;Cho, Kyuman;Kim, Taehoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.387-396
    • /
    • 2021
  • In building construction, the layout operation is performed to accurately construct the building components in their planned locations, and requires a high level of accuracy and precision. With increases in building size and a lack of skilled laborers, this work has seen an increasing demand for productivity and quality improvements through robot-based construction automation. In particular, the layout work for building structures has a higher need for automation. On this background, this study suggests a direction for the development of an automated layout system of building structures. 5 technical factors and 17 sub-factors were derived based on reviews of existing similar systems, and an evaluation of their importance was carried out through an expert survey. As a result, it was found that the most important factors were driving and marking systems for coping with poor driving and working conditions. In terms of sub-factors, control techniques to secure precision and technologies to automate the overall layout process showed high importance. These findings will contribute to the development of more practical and efficient automation systems.

A Study for Architectural Planning of the School Corresponding to the Future Society - Focus on the Elementary school, Middle school and High school facilities - (미래사회에 대응하는 학교건축 계획방향에 대한 기초연구 - 초.중.고등학교 시설을 중심으로 -)

  • Song, Byung-Joon;Chu, Beom
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.1
    • /
    • pp.190-198
    • /
    • 2011
  • The purpose of this research is to suggest the direction of the school planning for the future that could respond actively to fast-changing circumstances of the times. The specific purpose is as follows. First, this research creates the education spatial model for the future that could prepare the education for globalization, informationization, liberalization and suggests the direction of the school planning that would correspond to the revised curriculum in 2009. Based on the research findings, establish the fundamental architectural planning guidelines and provide a blueprint of the advanced school for the future. Second, this research suggests diverse layout method of the school building blocks for the future. Key factors, which are method of teaching, planning for eco-school, planning for ubiquitous computing environment, planning of mixed-use school facilities that would give direction of the school planning for the future are determined through theoretical consideration about the social structure, direction of education for the future and case study. Based on these keys factors, this research suggests directions of the school planning for the future.