• Title/Summary/Keyword: building analysis

Search Result 10,296, Processing Time 0.037 seconds

Enhancing Empathic Reasoning of Large Language Models Based on Psychotherapy Models for AI-assisted Social Support (인공지능 기반 사회적 지지를 위한 대형언어모형의 공감적 추론 향상: 심리치료 모형을 중심으로)

  • Yoon Kyung Lee;Inju Lee;Minjung Shin;Seoyeon Bae;Sowon Hahn
    • Korean Journal of Cognitive Science
    • /
    • v.35 no.1
    • /
    • pp.23-48
    • /
    • 2024
  • Building human-aligned artificial intelligence (AI) for social support remains challenging despite the advancement of Large Language Models. We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce LLMs to reason about human emotional states. This method is inspired by various psychotherapy approaches-Cognitive-Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), Person-Centered Therapy (PCT), and Reality Therapy (RT)-each leading to different patterns of interpreting clients' mental states. LLMs without CoE reasoning generated predominantly exploratory responses. However, when LLMs used CoE reasoning, we found a more comprehensive range of empathic responses aligned with each psychotherapy model's different reasoning patterns. For empathic expression classification, the CBT-based CoE resulted in the most balanced classification of empathic expression labels and the text generation of empathic responses. However, regarding emotion reasoning, other approaches like DBT and PCT showed higher performance in emotion reaction classification. We further conducted qualitative analysis and alignment scoring of each prompt-generated output. The findings underscore the importance of understanding the emotional context and how it affects human-AI communication. Our research contributes to understanding how psychotherapy models can be incorporated into LLMs, facilitating the development of context-aware, safe, and empathically responsive AI.

Directorial Characteristics Depicting Nietzschean Nihilism in Animation: A Focus on 'Attack on Titan' (니체의 허무주의가 재현된 애니메이션의 연출적 특성 -<진격의 거인>을 중심으로)

  • Kim Jiwoong;Lee Hyunseok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.413-420
    • /
    • 2024
  • After Friedrich Nietzsche's advocacy of nihilism, many literary works, dramas, and films have depicted aspects of human psychology associated with nihilism. Animation, too, has been used to convey nihilism, with narratives infused with nihilistic themes produced as both TV series and theatrical animations. Particularly, animation, as a visual medium capable of realizing any imaginative image unlike other media, possesses distinctive characteristics from live-action cinematography and differs from comics in its temporal properties. Hence, this study aims to analyze how Nietzsche's defined three stages of nihilism are represented within animation characters and how they construct various scenarios, using the anime "Attack on Titan" as a case study. The research unfolds by first examining Nietzsche's types of nihilism and the three stages through a review of literature, while also investigating the portrayal of nihilism in mass media and considering the unique attributes of animation. Secondly, building upon the literature review, the analysis interprets the narrative and constructed world of the chosen case study from a nihilistic perspective, examining four major characters through the stages of passive nihilism, active nihilism, and eternal recurrence. The findings demonstrate that the anime conveys two messages regarding negation and affirmation of one's life and existence, thereby offering viewers an opportunity to deeply contemplate human existence. This study is considered significant as it examines how Nietzschean nihilism is portrayed within the popular entertainment medium of animation.

Petrological Classification and Provenance Interpretation for the Stone Properties of Three-story Stone Pagoda in Beomhak-ri, Sancheong, Korea (산청 범학리 삼층석탑 석재의 암석학적 분류와 산지해석)

  • LEE Chan Hee;KANG San Ha;JO Young Hoon
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.70-88
    • /
    • 2024
  • Syenite is the name of a rock that has been used since ancient Roman period, but it is not widely distributed worldwide, and cases of its use as a material for Korean stone cultural heritages are very rare. However, the Three-story Stone Pagoda in Beomhak-ri of Sancheong, is composed of syenite, and each stone property has very similar rock phases, mineral compositions, grain sizes, colors and magnetic susceptibilities, indicating that they are all stones of the same rock series. Outcrops of syenite are relative widely distributed in the Beomhak-ri area, and it was mined for use as building stones until recently. This rock is almost identical in overall colors, occurrences, and mineralogical and petrological characteristics to that of the stone pagoda, and the geochemical evolution trends of the rocks are also very similar. In addition, numerous quarrying traces were identified in the same rock around the Beomhaksaji Temple site. In this way, the original stone properties of the Beomhak-ri Stone Pagoda were determined to be syenite because precise petrological and geochemical analysis and provenance interpretation was possible, the syenite was distributed around the temple site, and ancient quarrying traces were scattered in the same rocks. Therefore, it can be interpreted that the Beomhak-ri Stone Pagoda was processed and constructed using self-sufficient stone materials from the temple site area.

Fresh and hardened properties of expansive concrete utilizing waste aluminum lathe

  • Yasin Onuralp Ozkilic;Ozer Zeybek;Ali Ihsan Celik;Essam Althaqafi;Md Azree Othuman Mydin;Anmar Dulaimi;Memduh Karalar;P. Jagadesh
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.595-608
    • /
    • 2024
  • In this study, aluminum lathe waste was used by replacing aggregates in certain proportions in order to obtain expansive concrete using recycled materials. For this reason, five different aluminum wastes of 1%, 2%, 3%, 4% and 5% were selected and also reference without aluminum waste was produced. Based on the mechanical tests conducted, which included slump, compression, splitting tensile, and flexural tests, it was evident that the workability of the material declined dramatically once the volume ratio of aluminum exceeded 2%. As determined by the compressive strength test (CST), the CS of concrete (1% aluminum lathe wastes replaced with aggregate) was 11% reducer than that of reference concrete. It was noted that the reference concrete's CS values, which did not include aluminum waste, were greater than those of the concrete that contained 5% aluminum. When comparing for splitting tensile strength (STS), it was observed that the results of STS generally follow the parallel inclination as the CS. The reduction in these strengths when 1% aluminum is utilized is less than 10%. These ratios modified 18% when flexural strength (FS) is considered. Therefore, 1% of aluminum waste is recommended to obtain expansive concrete with recycled materials considering minimum loss of strength. Moreover, Scanning Electron Microscope (SEM) analysis was performed and the results also confirm that there was expansion in the aluminum added concrete. The presence of pores throughout the concrete leads to the formation of gaps, resulting in its expansion. Additionally, for practical applications, basic equations were developed to forecast the CS, STS, and FS of the concrete with aluminum lathe waste using the data already available in the literature and the findings of the current study. In conclusion, this study establishes that aluminum lathe wastes are suitable, readily available in significant quantities, locally sourced eco-materials, cost-effective, and might be selected for construction using concrete, striking a balance among financially and ecological considerations.

Automated Data Extraction from Unstructured Geotechnical Report based on AI and Text-mining Techniques (AI 및 텍스트 마이닝 기법을 활용한 지반조사보고서 데이터 추출 자동화)

  • Park, Jimin;Seo, Wanhyuk;Seo, Dong-Hee;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.69-79
    • /
    • 2024
  • Field geotechnical data are obtained from various field and laboratory tests and are documented in geotechnical investigation reports. For efficient design and construction, digitizing these geotechnical parameters is essential. However, current practices involve manual data entry, which is time-consuming, labor-intensive, and prone to errors. Thus, this study proposes an automatic data extraction method from geotechnical investigation reports using image-based deep learning models and text-mining techniques. A deep-learning-based page classification model and a text-searching algorithm were employed to classify geotechnical investigation report pages with 100% accuracy. Computer vision algorithms were utilized to identify valid data regions within report pages, and text analysis was used to match and extract the corresponding geotechnical data. The proposed model was validated using a dataset of 205 geotechnical investigation reports, achieving an average data extraction accuracy of 93.0%. Finally, a user-interface-based program was developed to enhance the practical application of the extraction model. It allowed users to upload PDF files of geotechnical investigation reports, automatically analyze these reports, and extract and edit data. This approach is expected to improve the efficiency and accuracy of digitizing geotechnical investigation reports and building geotechnical databases.

The Impact of Health Teachers' Behavioral Characteristics on Organizational Commitment: Ffocusing on Self-Efficacy and Task Importance (보건교사의 행동적 특성이 조직몰입에 미치는 영향: 자기효능감과 과업중요성을 중심으로)

  • Sangho Park;Kyung Kim;Shincheol Kang
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.4
    • /
    • pp.215-229
    • /
    • 2024
  • The purpose of this study was to explore various factors that affect the organizational commitment of health teachers' behavioral characteristics and explain the causal relationship between each factor. As an exploratory study, the subjects were about 500 people working as health teachers. A survey was conducted, and 190 responses were collected. Descriptive statistics were analyzed using SPSS, and the measurement model and hypotheses were tested using structural equation modeling. As a result of the analysis, the behavioral characteristics of health teachers were found to have a positive effect on their self-efficacy, and the behavioral characteristics and self-efficacy were found to have a positive effect on emotional commitment. In addition, health teachers' self-efficacy has a positive effect on emotional commitment, which means that rather than their behavioral characteristics having a direct effect on emotional commitment, their behavioral characteristics indirectly affect emotional commitment through a mediator called self-efficacy. It shows that it has an impact. In particular, it was confirmed that the school nurse's level of awareness of the importance of the task affected self-efficacy and emotional commitment. The implication of this study is that it explained the phenomenon of transfer of their behavioral characteristics to organizational commitment by empirically revealing that the competency, or behavioral characteristics, of health teachers are a factor affecting organizational commitment through self-efficacy. The goal is to empirically demonstrate that awareness of task importance, a job characteristic, affects self-efficacy and organizational commitment. The results of the study are expected to be able to suggest directions for capacity building and operation of health teachers.

  • PDF

Analysis of Vibration Characteristics Changes in a Single-Span Bridge Due to Temperature Using Continuous Measurement Data (상시 계측 데이터를 이용한 단경간 교량의 온도에 따른 진동 특성 변화 분석)

  • Tae-Ho Kwon;Byeong-Cheol Kim;Ki-Tae Park;Chi-Ho Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.62-68
    • /
    • 2024
  • The Republic of Korea experiences four distinct seasons, with significant temperature differences between summer and winter, causing bridges to undergo large temperature variations throughout the year. When the temperature changes, the dynamic characteristics of bridge structures also change. However, during load-bearing capacity assessments in domestic bridge maintenance, this temperature effect is not considered, and only the natural frequency measured over a short period is used for evaluation. In this paper, we theoretically analyze the impact of changes in natural frequency on bridges and extract daily estimated natural frequency data from bridges with continuous vertical acceleration measurements taken over more than a year to confirm temperature-induced changes. The results show that a 1% decrease in natural frequency corresponds to an approximately 2% decrease in the load-bearing capacity of the bridge. Additionally, it was found from the measurement data that a 10℃ increase in temperature did not affect the natural frequency of RC slab bridges and Rahmen bridges, but in PSC-I girder bridges and steel box girder bridges, the natural frequency decreased by approximately 1.04% to 2.48%.

Comparison Analysis of Environmental Performance between Reconstruction and Remodeling Alternatives for Aged - Focused on CO2 Emissions Analysis - (공동주택 재건축과 리모델링의 친환경성 비교분석 - CO2 배출량 분석을 중심으로 -)

  • Kim, Chibaek;Shin, Dongwoo;Han, Juyeon;Hwang, Youngkyu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.1
    • /
    • pp.87-100
    • /
    • 2014
  • Environmental problems and the shortage of natural resources are currently gathering more attention in Korea and international countries. With these problems, it is reported that most current domestic buildings are emitting approximately 138 million tons of greenhouse gas. According to a recent report from the investigation of Korean housing population, the total number of households is approximately 12.9 millions, and the apartments that were built more than 15 years ago amounted to 3.1 millions. This shows that the rates of old apartment housings are increasing. Therefore, it is necessary to consider the deteriorated facilities and environmental improvement. Also, the construction industry is benefited by improving these housings which may need either remodeling or reconstruction. Environmental friendly buildings are a rising consideration for remodeling and reconstruction projects; it helps to determine many business matters in construction. The main purpose of this research is to improve environmental condition in apartments with comparison analysis between remodeling and reconstruction alternatives. This research is focused on characteristics of remodeling and reconstruction and it sets up the same condition with each level in order to evaluate the value of environmental friendliness and analyze its definition. The result of this research provides a unique emitting rate at a novel framework and this will cause the reduction of $CO_2$. It is analyzed that the remodeling construction can reduce the great amount of $CO_2$. Therefore, it will be a good decision guideline in selecting the most eco-friendly alternative to improve environment for building construction. Although reconstruction is a popular alternative nowadays in Korea, this research can provide a reason why decision makers should put more emphasis on remodeling as an environment-friendly alternative.

Green Spaces in the Urban Peripheries of Metropole Regions for Sustainable Development - Focused on Berlin, Milano and Seoul - (지속가능한 발전을 위한 대도시 외연부 녹지 활용 사례연구 - 베를린, 밀라노, 서울을 대상으로 -)

  • Hoh, Yun Kyeong;Chae, Jin-Hae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.1
    • /
    • pp.72-85
    • /
    • 2018
  • This study focused on cases that led sustainable urban development through the construction and utilization of organic greenery systems linking green spaces of urban peripheries with metropolitan areas. To that end, Berlin - Brandenburg's regional parks in Germany and Milan's Raggi Verdi, a radial green axis project, in Italy were selected for analysis as case studies. As frameworks for this analysis, this study has established existing infrastructure accessibility and linkage, recycling and cooperative management. The results of the case study analysis are as follows: First, the specialized spatial strategy based on the individuality of the green space outside the city rather than a uniform landscape was used as the foundation of the sustainable development plan. Second, physical linkage from the center of the city to the periphery contributed to the sustainable development of the overall metropolis by improving the economic value of the surrounding area as well as ecological and environmental values. Third, the central management system was established to reduce the administrative inconvenience caused by multiple administrative districts in the green space of urban periphery. The implications of applying the above results to Seoul, Korea are as follows. First, it is necessary to establish a differentiation strategy by re-establishing the identity of a green landscape in the urban periphery, because the green spaces of Seoul's periphery are dispersed and mostly have a repetitious mountain landscape. Also, it is necessary to actively link peripheral mountains and urban green areas to create ecological value and economic value, and ultimately to help the sustainable development of the city. Finally, building an integrated management system is required to solve fragmented green space management departments in most of the urban periphery's green spaces. In conclusion, this study shows the significant possibility that the sustainable development of a metropolis can be derived from the utilization, linkage, and management of the green space in the urban peripheries, which is extraordinary compared to normal centralized urban development.

A Study on Construction and Application of Nuclear Grade ESF ACS Simulator (원자력등급 ESF 공기정화계통 시뮬레이터 제작 및 활용에 관한 연구)

  • Lee, Sook-Kyung;Kim, Kwang-Sin;Sohn, Soon-Hwan;Song, Kyu-Min;Lee, Kei-Woo;Park, Jeong-Seo;Hong, Soon-Joon;Kang, Sun-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.319-327
    • /
    • 2010
  • A nuclear plant ESF ACS simulator was designed, built, and verified to perform experiment related to ESF ACS of nuclear power plants. The dimension of 3D CAD model was based on drawings of the main control room(MCR) of Yonggwang units 5 and 6. The CFD analysis was performed based on the measurement of the actual flow rate of ESF ACS. The air flowing in ACS was assumed to have $30^{\circ}C$ and uniform flow. The flow rate across the HEPA filter was estimated to be 1.83 m/s based on the MCR ACS flow rate of 12,986 CFM and HEPA filter area of 9 filters having effective area of $610{\times}610mm^2$ each. When MCR ACS was modeled, air flow blocking filter frames were considered for better simulation of the real ACS. In CFD analysis, the air flow rate in the lower part of the active carbon adsorber was simulated separately at higher than 7 m/s to reflect the measured value of 8 m/s. Through the CFD analyses of the ACSes of fuel building emergency ventilation system, emergency core cooling system equipment room ventilation cleanup system, it was confirmed that all three EFS ACSes can be simulated by controlling the flow rate of the simulator. After the CFD analysis, the simulator was built in nuclear grade and its reliability was verified through air flow distribution tests before it was used in main tests. The verification result showed that distribution of the internal flow was uniform except near the filter frames when medium filter was installed. The simulator was used in the tests to confirm the revised contents in Reg. Guide 1.52 (Rev. 3).