• Title/Summary/Keyword: buffer cache management

Search Result 36, Processing Time 0.03 seconds

Management Technique of Buffer Cache for Rendering Systems (렌더링 시스템을 위한 버퍼캐쉬 관리기법)

  • Shin, Donghee;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.155-160
    • /
    • 2018
  • In this paper, we found that buffer cache in general systems does not perform well in rendering software, and presented a new buffer cache management scheme that resolves this problem. To do so, we collected various file I/O traces of rending software and analyzed their characteristics. From this analysis, we observed that file I/Os in rendering consist of long loops, short loops, random accesses, and write-once accesses. Based on this observation, we presented a buffer cache management scheme that allocates cache space to each access types and manages them appropriately, thereby improving the buffer cache performances by 19% on average and up to 55%.

Dynamic Cache Partitioning Strategy for Efficient Buffer Cache Management (효율적인 버퍼 캐시 관리를 위한 동적 캐시 분할 블록교체 기법)

  • 진재선;허의남;추현승
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.2
    • /
    • pp.35-44
    • /
    • 2003
  • The effectiveness of buffer cache replacement algorithms is critical to the performance of I/O systems. In this paper, we propose the degree of inter-reference gap (DIG) based block replacement scheme that retains merits of the least recently used (LRU) such as simple implementation and good cache hit ratio (CHR) for general patterns of references, and improves CHR further. In the proposed scheme, cache blocks with low DIGs are distinguished from blocks with high DIGs and the replacement block is selected among high DIGs blocks as done in the low inter-reference recency set (LIRS) scheme. Thus, by having the effect of the partitioning the cache memory dynamically based on DIGs, CHR is improved. Trace-driven simulation is employed to verified the superiority of the DIG based scheme and shows that the performance improves up to about 175% compared to the LRU scheme and 3% compared to the LIRS scheme for the same traces.

  • PDF

Buffer Cache Management of Smartphones Exploiting Write-Only-Once Characteristics (1회성 쓰기 참조 특성을 고려하는 스마트폰 버퍼캐쉬 관리 기법)

  • Kim, Dohee;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.129-134
    • /
    • 2015
  • This paper analyzes file access characteristics of smartphone apps and finds that a large portion of file writes are performed only once. Based on this observation, we present a new buffer cache management scheme that considers this characteristics. Buffer cache improves storage performance by maintaining hot file data in memory thereby servicing subsequent requests without storage accesses. However, it should flush modified data to storage in order to resist system crashes. The proposed scheme evicts cache data that has been written only once upon flushes, thus improving cache space utilization. Simulation experiments show that the proposed scheme improves cache hit ratio by 5-33% and power consumption by 27-92%.

An Efficient Algorithm for Restriction on Duplication Caching between Buffer and Disk Caches (버퍼와 디스크 캐시 사이의 중복 캐싱을 제한하는 효율적인 알고리즘)

  • Jung, Soo-Mok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.10 no.1
    • /
    • pp.95-105
    • /
    • 2006
  • The speed of hard disk which is based on mechanical operation is more slow than processor. The growth of processor speed is rapid by semiconductor technology, but the growth of disk speed which is based on mechanical operation is not enough. Buffer cache in main memory and disk cache in disk controller have been used in computer system to solve the speed gap between processor and I/O subsystem. In this paper, an efficient buffer cache and disk cache management scheme was proposed to restrict duplicated disk block between buffer cache and disk cache. The performance of the proposed algorithm was evaluated by simulation.

  • PDF

Hybrid Buffer Replacement Scheme Considering Reference Pattern in Multimedia Storage Systems (멀티미디어 저장 시스템에서 참조 유형을 고려한 혼성 버퍼 교체 기법)

  • 류연승
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.1
    • /
    • pp.47-56
    • /
    • 2002
  • Previous buffer cache schemes for multimedia storage systems only exploited the sequential references of multimedia files and didn't consider looping references. However, in some video applications like foreign language learning, users mark the scene as loop area and then application automatically playbacks the scene several times. In this paper, we propose a new buffer replacement scheme, called HBM(Hybrid Buffer Management), for multimedia storage systems that have both sequential and looping references. Proposed scheme assumes that application layer informs reference pattern of files to file system. Then HBM applies an appropriate replacement policy to each file. Our simulation experiments show that HBM outperforms previous buffer cache schemes such as DISTANCE and LRU.

  • PDF

A Design and Implementation on Large Data File Management Using Buffer Cache and Virtual Memory File (버퍼 캐쉬와 가상메모리 파일을 이용한 대형 데이터화일의 처리방법 설계 및 구현)

  • 김병철;신병석;조동섭;황희영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.784-792
    • /
    • 1992
  • In this paper we design and implement a method for application programs to allow handling of large data files in DOS environment. In this method we use extended memory and hard disk as a data buffer. And we use a part of the conventional DOS memory as a buffer cache which allows the application program to use extended memory and hard disks transparently. Using buffer cache also allows us some speed improvement for the application program.

  • PDF

An Efficient Buffer Cache Management Scheme for Heterogeneous Storage Environments (이기종 저장 장치 환경을 위한 버퍼 캐시 관리 기법)

  • Lee, Se-Hwan;Koh, Kern;Bahn, Hyo-Kyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.285-291
    • /
    • 2010
  • Flash memory has many good features such as small size, shock-resistance, and low power consumption, but the cost of flash memory is still high to substitute for hard disk entirely. Recently, some mobile devices, such as laptops, attempt to use both flash memory and hard disk together for taking advantages of merits of them. However, existing OSs (Operating Systems) are not optimized to use the heterogeneous storage media. This paper presents a new buffer cache management scheme. First, we allocate buffer cache space according to access patterns of block references and the characteristics of storage media. Second, we prefetch data blocks selectively according to the location of them and access patterns of them. Third, we moves destaged data from buffer cache to hard disk or flash memory considering the access patterns of block references. Trace-driven simulation shows that the proposed schemes enhance the buffer cache hit ratio by up to 29.9% and reduce the total I/O elapsed time by up to 49.5%.

Design of Global Buffer Manager in SAN-based Cluster File Systems (SAN 환경의 대용량 클러스터 파일 시스템을 위한 광역 버퍼 관리기의 설계)

  • Lee, Kyu-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2404-2410
    • /
    • 2011
  • This paper describes the design overview of cluster file system $SANique^{TM}$ based on SAN(Storage Area Network) environment. The design issues and problems of the conventional global buffer manager are also illustrated under a large set of clustered computing hosts. We propose the efficient global buffer management method that provides the more scalability and availability. In our proposed global buffer management method, we reuse the maintained list of lock information from our cluster lock manager. The global buffer manger can easily find and determine the location of requested data block cache based on that lock information. We present the pseudo code of the global buffer manager and illustration of global cache operation in cluster environment.

IT-based Technology An Efficient Global Buffer Management ,algorithm for SAN Environments (SAN 환경을 위한 효율적인 전역버퍼 관리 알고리즘)

  • 이석재;박새미;송석일;유재수;이장선
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.3
    • /
    • pp.71-80
    • /
    • 2004
  • In distributed file-systems, cooperative caching algorithm which owns the data cached at each node jointly is used to reduce an expense of disk access. Cooperative caching algorithm is the method that increases a cache hit-ratio and decrease a disk access as it holds the cache information of distributed systems in common and makes cache larger virtually. Recently, several cooperative caching algorithms decrease the message costs by using approximate information of the cache and increase the cache hit-ratio by using local and global cache fields dynamically. And they have an advantage that increases the whole field hit-ratio by sending a replaced buffer to the idle node on buffers replacement in order to maintain the replaced cache in the cache field. However the wrong approximate information deteriorates the performance, the consistency maintenance goes to great expense to exchange messages and the cost that manages Age-information of each node to choose the idle node increases. In this thesis, we propose a cooperative cache algorithm that maintains correct cache information, minimizes the maintenance cost for consistency and the management cost for buffer Age-information. Also, we show the superiority of our algorithm through the performance evaluation.

  • PDF

Low-power Buffer Cache Management for Mixed HDD and SSD Storage Systems (HDD와 SSD의 혼합형 저장 시스템을 위한 절전형 버퍼 캐쉬 관리)

  • Kang, Hyo-Jung;Park, Jun-Seok;Koh, Kern;Bahn, Hyo-Kyung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.462-466
    • /
    • 2010
  • A new buffer cache management scheme that aims at reducing power consumption in mixed HDD and NAND flash memory storage systems is presented. The proposed scheme reduces power consumption by considering different energy-consumption rate of storage devices, I/O operation type (read or write), and reference potential of cached blocks in terms of both recency and frequency. Simulation shows that the proposed scheme reduces power consumption by 18.0% on average and up to 58.9%.