• Title/Summary/Keyword: budget estimate

Search Result 214, Processing Time 0.034 seconds

Analysis of the Joint Crediting Mechanism's Contribution to Japan's NDC (일본의 NDC 이행을 위한 공동감축실적이전 분석)

  • Kim, Youngsun
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.297-303
    • /
    • 2017
  • Considering Japan's Greenhouse Gas (GHG) emissions reduction target for Fiscal Year (FY) 2030, the Joint Crediting Mechanism (JCM) was analyzed in order to estimate its significant contribution to Japan's Nationally Determined Contribution (NDC) and check its availability as a new mechanism to achieve Korea's 2030 mitigation target of 11.3% using carbon credits from international market mechanisms. The total budget for JCM Model Projects (1.2 billion JPY/yr) and JCM REDD+ Model Projects (0.8 billion JPY/yr), which are expected to deliver at least 50% of issued credits to Japan, is estimated about 21.6 billion JPY by the year 2030. This budget is about one third of the purchase of carbon credits from international carbon markets. So far, JCM credits of $378tCO_2-eq$. have been allocated to Japan, which are about 77% of the total issued credit through five-JCM Model Projects implemented from the year 2014. It is expected that Japan will obtain about $0.5MtCO_2-eq$. credits more from 100-ongoing JCM Projects, which are only 1% of Japan's NDC target through JCM credits. With regard to regular issued credits from implemented projects, expected new issued credits from pipeline projects and the less budget for JCM implementation as compared to purchasing carbon credits, JCM credits can be reached a resonable level of Japan's NDC target of $50{\times}100MtCO_2-eq$. through JCM until FY 2030.

Global Carbon Budget Study using Global Carbon Cycle Model (탄소순환모델을 이용한 지구 규모의 탄소 수지 연구)

  • Kwon, O-Yul;Jung, Jaehyung
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1169-1178
    • /
    • 2018
  • Two man-made carbon emissions, fossil fuel emissions and land use emissions, have been perturbing naturally occurring global carbon cycle. These emitted carbons will eventually be deposited into the atmosphere, the terrestrial biosphere, the soil, and the ocean. In this study, Simple Global Carbon Model (SGCM) was used to simulate global carbon cycle and to estimate global carbon budget. For the model input, fossil fuel emissions and land use emissions were taken from the literature. Unlike fossil fuel use, land use emissions were highly uncertain. Therefore land use emission inputs were adjusted within an uncertainty range suggested in the literature. Simulated atmospheric $CO_2$ concentrations were well fitted to observations with a standard error of 0.06 ppm. Moreover, simulated carbon budgets in the ocean and terrestrial biosphere were shown to be reasonable compared to the literature values, which have considerable uncertainties. Simulation results show that with increasing fossil fuel emissions, the ratios of carbon partitioning to the atmosphere and the terrestrial biosphere have increased from 42% and 24% in the year 1958 to 50% and 30% in the year 2016 respectively, while that to the ocean has decreased from 34% in the year 1958 to 20% in the year 2016. This finding indicates that if the current emission trend continues, the atmospheric carbon partitioning ratio might be continuously increasing and thereby the atmospheric $CO_2$ concentrations might be increasing much faster. Among the total emissions of 399 gigatons of carbon (GtC) from fossil fuel use and land use during the simulation period (between 1960 and 2016), 189 GtC were reallocated to the atmosphere (47%), 107 GtC to the terrestrial biosphere (27%), and 103GtC to the ocean (26%). The net terrestrial biospheric carbon accumulation (terrestrial biospheric allocations minus land use emissions) showed positive 46 GtC. In other words, the terrestrial biosphere has been accumulating carbon, although land use emission has been depleting carbon in the terrestrial biosphere.

Economic Evaluation and Budget Impact Analysis of the Surveillance Program for Hepatocellular Carcinoma in Thai Chronic Hepatitis B Patients

  • Sangmala, Pannapa;Chaikledkaew, Usa;Tanwandee, Tawesak;Pongchareonsuk, Petcharat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8993-9004
    • /
    • 2014
  • Background: The incidence rate and the treatment costs of hepatocellular carcinoma (HCC) are high, especially in Thailand. Previous studies indicated that early detection by a surveillance program could help by down-staging. This study aimed to compare the costs and health outcomes associated with the introduction of a HCC surveillance program with no program and to estimate the budget impact if the HCC surveillance program were implemented. Materials and Methods: A cost utility analysis using a decision tree and Markov models was used to compare costs and outcomes during the lifetime period based on a societal perspective between alternative HCC surveillance strategies with no program. Costs included direct medical, direct non-medical, and indirect costs. Health outcomes were measured as life years (LYs), and quality adjusted life years (QALYs). The results were presented in terms of the incremental cost-effectiveness ratio (ICER) in Thai THB per QALY gained. One-way and probabilistic sensitivity analyses were applied to investigate parameter uncertainties. Budget impact analysis (BIA) was performed based on the governmental perspective. Results: Semi-annual ultrasonography (US) and semi-annual ultrasonography plus alpha-fetoprotein (US plus AFP) as the first screening for HCC surveillance would be cost-effective options at the willingness to pay (WTP) threshold of 160,000 THB per QALY gained compared with no surveillance program (ICER=118,796 and ICER=123,451 THB/QALY), respectively. The semi-annual US plus AFP yielded more net monetary benefit, but caused a substantially higher budget (237 to 502 million THB) than semi-annual US (81 to 201 million THB) during the next ten fiscal years. Conclusions: Our results suggested that a semi-annual US program should be used as the first screening for HCC surveillance and included in the benefit package of Thai health insurance schemes for both chronic hepatitis B males and females aged between 40-50 years. In addition, policy makers considered the program could be feasible, but additional evidence is needed to support the whole prevention system before the implementation of a strategic plan.

Energy budget of sandfish juvenile, Arctoscopus japonicus reared at different diet conditions and water temperature (수온과 먹이에 따른 도루묵 (Arctoscopus japonicus) 치어의 에너지수지)

  • Yang, Jae-Hyeong;Lee, Sung-Il;Yoon, Sang-Chul;Kim, Jong-Bin;Chun, Young-Yull;Park, Kie-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.2
    • /
    • pp.128-138
    • /
    • 2011
  • In this study, energy budget was estimated to produce an efficient artificial seed. And it needs to enhance fisheries productivity of sandfish, A. japonicus. In order to estimate energy budget of the sandfish, A. japonicus juvenile fed on nonriched Artemia nauplii (NA) and the enriched Artemia nauplii (EA), of sandfish were reared at constant condition of seawater temperature of natural temperature (NT) and heated temperature (HT). During the reared period, energy used by the reared juveniles were calculated from estimates of data on ingestion, growth, oxygen consumption, nitrogen excretion and energy content. Energy budget of NT-NA, NT-EA, HT-NA and HT-EA were represented as 100C=66.49G+21.28M+0.78F+1.44U, 100C=67.54G+21.40M+9.39F+1.67U, 100C=66.86G+22.66M+8.01F+2.47U and 100C=67.06G+22.96M+7.70F+2.28U. The assimilation efficiency estimated NT-NA, NT-EA, HT-NA and HTEA were represented as 87.78%, 88.94%, 89.52% and 90.02%. Gross growth efficiency estimated NT-NA, NT-EA, HT-NA and HT-EA were represented as 66.49%, 67.54%, 66.86% and 67.06%. Net growth efficiency estimated NT-NA, NT-EA, HT-NA and HT-EA were represented as 75.75%, 75.94%, 74.68% and 74.49%. In this results, two ways could be considered to produce an efficient artificial seed of sandfish. To hasten the growth of sandfish juvenile, heated seawater (HT) and enriched Artemia nauplii (EA) should be inputted to reared condition. And to increase the energy efficiency, natural seawater (NT) and enriched Artemia nauplii (EA) should be inputted to reared condition.

A Study on the Perceptions and Current Practices in Estimating Risk Cost of Contractor's Construction Budget - Focused on Building Projects - (종합건설사 실행예산 편성 시 리스크 비용 산정에 관한 인식 및 실태에 관한 연구 - 건축공사를 중심으로 -)

  • Choi, Jeong Won;Kim, Han Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.3
    • /
    • pp.13-24
    • /
    • 2022
  • Construction projects are exposed to various types of risks, which tend to increase. The increasing risks call for contractors' more attentions to forecasting and dealing with these risks. One of the measures to deal with contractors' risks is to forecast or estimate risk cost and include it in the construction budget. Although various researches in relation to risk cost have been observed, little attention has been paid to general contractors' perceptions and current practices in estimating risk cost of construction budget. The objective of the study is to identify and discuss key characteristics and implications based on the survey and analysis of general contractors' perceptions and current practices in estimating risk cost of construction budget. The study shows that there is a gap between the perception and the practice of estimating risk cost, that is, high perception of the importance of risk cost and a relatively low level of practice. It suggests that historical cost data, guidelines and corporate-level standard procedures are required to improve the current practice in addition to sufficient time allocations for risk cost estimating. It discusses that there is a need for using sophisticated estimating techniques including bid data analytics despite a low level of the current adoption, and also proposes that research and development in the field of the sophisticated estimating techniques should be further implemented in order to increase their practicality.

Estimation of Vegetation Carbon Budget in South Korea using Ecosystem Model and Spatio-temporal Environmental Information (생태계 모형과 시공간 환경정보를 이용한 우리나라 식생 탄소 수지 추정)

  • Yoo, Seong-Jin;Lee, Woo-Kyun;Son, Yo-Whan;Ito, Akihiko
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.145-157
    • /
    • 2012
  • In this study, we simulated a carbon flux model, so called Vegetation Integrated Simulator for Trace gases (VISIT) using Spatio-temporal Environmental Information, to estimate carbon budgets of vegetation ecosystem in South Korea. As results of the simulation, the model estimated that the annual-average gross primary production (GPP), net primary production (NPP) for 10 years were $91.89Tg\;C\;year^{-1}$, and $40.16Tg\;C\;year^{-1}$, respectively. The model also estimated the vegetation ecosystems in South Korea as a net carbon sink, with a value of $3.51Tg\;C\;year^{-1}$ during the simulation period. Comparing with the anthropogenic emission of South Korea, vegetation ecosystems offsets 3.3% of human emissions as a net carbon sink in 2007. To estimate the carbon budget more accurately, it is important to prepare reliable input datasets. And also, model parameters should be calibrated through comparing with various independent method. The result of this study, however, would be helpful for devising ecosystem management strategies that may help to mitigate global climate change.

Analysis of Impact Factors for the Improvement of Conceptual Cost Estimation Accuracy for Public Office Building (공공청사 개산견적 정확도 향상을 위한 공사비 영향요인 분석)

  • Jo, Yeong-Ho;Yun, Seok-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.495-506
    • /
    • 2021
  • A Conceptual cost estimate, which is computed in the preliminary step of a project, is important for decision-making by a contractor in terms of the project budget, economic feasibility and validity analysis, and alternative comparisons. Therefore, a high error rate of a prediction model for a conceptual cost estimate can lead to various problems including excessive project expenditures and a delayed break-even point. this study proposed optimal impact factors by configuring quantitative impact factors computable in a preliminary step in various cases(combinations of impact factors). subsequently, the accuracy of different cases was comparatively analyzed by using the cases as input values of a prediction model using regression analysis. when the optimal combination of impact factors proposed in this study and other combination of impact factors were applied to the prediction model, the regression analysis-based prediction model exhibited 0.2-4.7% improvements in accuracy, respectively. the optimal combination of impact factors proposed in this study improved the accuracy of the prediction model of a conceptual cost estimate by removing unnecessary impact factor.

ESTIMATING COSTS DURING THE INITIAL STAGE OF CONCEPTUAL PLANNING FOR PUBLIC ROAD PROJECTS: CASE-BASED REASONING APPROACH

  • Seokjin Choi;Donghoon Yeo;Seung H. Han
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1183-1188
    • /
    • 2009
  • Estimating project costs during the early stage of conceptual planning is very important when deciding whether to approve the project and allocate an appropriate budget. However, due to greater uncertainties involved in a project, it is challenging to estimate costs during this initial stage within a reasonable tolerance. This paper attempts to develop a cost-estimate model for public road projects under these circumstances and limitations. In the conceptual planning stage of a road project, there is only limited information for cost estimation, for example, such input data as total length of the route, origin and destination, number of lanes, general geographic characteristics of the route, and other basic attributes. This implies that the model should individuate suitable but restricted information without considering detailed features such as quantity of earthwork and a detailed route of a given condition. With these limited facts, this paper applies a case-based reasoning (CBR) method to solve a new problem by deriving similar past problems, which in turn is used to estimate the cost of a given project based on best-fitted previous cases. To develop a CBR cost-estimate model, the authors classified 8 representative variables, including project type, the number of lanes, total length, road design grades, etc. Then, we developed the CBR model, primarily by using 180 actual cases of public road projects, procured over the last decade. With the CBR model, it was found that the degree of error in estimation can be reasonably reduced, to below approximately 30% compared to the final costs estimated upon the completion of detailed design.

  • PDF

The Corresponding Plan for Integrated Environment-the Lowest Cost Bid and The Current Cost Estimate System (최저가입찰제 및 실적공사비적산 환경에서의 대응방안)

  • Kim, Byeong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.849-859
    • /
    • 2006
  • Earnings of domestic enterprises are expected a serious damage because the lowest cost bid system and the current cost estimate system. In 2005 average successful bid rate for the lowest cost bid project is below 60%, this is not reach at the operating budget of enterprise. Many problems such as illegal construction, low price subcontract, chain enterprise loss com in to practice because of low successful bid rate. In addition earnings of the enterprises expected to be the minimum, because of enlarge execution of the current cost estimate system. This study tries to lend assistance by giving alternative for the construction enterprise by presenting the bid system, investigate and compare foreign system with domestic and analyze correlation of the lowest cost bid and the current cost estimate system.

A review of Deepwater Horizon Oil Budget Calculator for its Application to Korea (딥워터 호라이즌호 유출유 수지분석 모델의 국내 적용성 검토)

  • Kim, Choong-Ki;Oh, Jeong-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.322-331
    • /
    • 2016
  • Oil budget calculator identifies the removal pathways of spilled oil by both natural and response methods, and estimates the remaining oil required response activities. A oil budget calculator was newly developed as a response tool for Deepwater Horizon oil spill incident in Gulf of Mexico in 2010 to inform clean up decisions for Incident Comment System, which was also successfully utilized to media and general public promotion of oil spill response activities. This study analyzed the theoretical background of the oil budget calculator and explored its future application to Korea. The oil budge calculation of four catastrophic marine pollution incidents indicates that 3~8% of spilled oil was removed mechanically by skimmers, 1~5% by in-situ burning, 4.8~16% by chemical dispersion due to dispersant operation, and 37~56% by weathering processes such as evaporation, dissolution, and natural dispersion. The results show that in-situ burning and chemical dispersion effectively remove spilled oil more than the mechanical removal by skimming, and natural weathering processes are also very effective to remove spilled oil. To apply the oil budget calculator in Korea, its parameters need to be optimized in response to the seasonal characteristics of marine environment, the characteristics of spilled oil and response technologies. A new algorithm also needs to be developed to estimate the oil budget due to shoreline cleanup activities. An oil budget calculator optimized in Korea can play a critical role in informing decisions for oil spill response activities and communicating spill prevention and response activities with the media and general public.