• 제목/요약/키워드: buckling modes

검색결과 214건 처리시간 0.024초

Load-carrying capacities and failure modes of scaffold-shoring systems, Part II: An analytical model and its closed-form solution

  • Huang, Y.L.;Kao, Y.G.;Rosowsky, D.V.
    • Structural Engineering and Mechanics
    • /
    • 제10권1호
    • /
    • pp.67-79
    • /
    • 2000
  • Critical loads and load-carrying capacities for steel scaffolds used as shoring systems were compared using computational and experimental methods in Part I of this paper. In that paper, a simple 2-D model was established for use in evaluating the structural behavior of scaffold-shoring systems. This 2-D model was derived using an incremental finite element analysis (FEA) of a typical complete scaffold-shoring system. Although the simplified model is only two-dimensional, it predicts the critical loads and failure modes of the complete system. The objective of this paper is to present a closed-form solution to the 2-D model. To simplify the analysis, a simpler model was first established to replace the 2-D model. Then, a closed-form solution for the critical loads and failure modes based on this simplified model were derived using a bifurcation (eigenvalue) approach to the elastic-buckling problem. In this closed-form equation, the critical loads are shown to be function of the number of stories, material properties, and section properties of the scaffolds. The critical loads and failure modes obtained from the analytical (closed-form) solution were compared with the results from the 2-D model. The comparisons show that the critical loads from the analytical solution (simplified model) closely match the results from the more complex model, and that the predicted failure modes are nearly identical.

이중탄성계수 복합재료판의 좌굴 (Buckling of Bimodulus Composite Thin Plate)

  • 이영신;김종천
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1520-1534
    • /
    • 1994
  • A new analytical method for the prediction of the buckling behavior of laminated plates consisting of layers having different properties in tension and compression, so called bimodulus, is proposed in this paper. Buckling analysis of bimodular composite laminated paltes are performed with the results reduced from plate bending analysis. The governing equations of bimodular plates are based on the first shear deformation theory. As a case study, bending and buckling of simply supported, multilayered, symmetric, antisymmtric, and specially orthotropic laminates under uniformly distributed lateral load for bending analysis and in-plane load for buckling are considered. The results of the bending analysis are compared with the previous papers. Then, the fundamental critical buckling loads and buckling modes are calculated for the various bimodular composite rectangular thin plates.

압축과 휨을 동시에 받는 가교량 주요부재의 좌굴설계 (Buckling Design of Temporary Bridges Subjected to Both Bending and Compression)

  • 소병훈;경용수;방진환;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.977-984
    • /
    • 2006
  • Generally main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges is presented using 3D system buckling analysis and second-order elastic analysis. 2 types of temporary bridges, which are possible to be designed and fabricated in reality, are chosen and the buckling design for them is performed considering load combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, effects of live loads on effective length of main members, transition of ~id buckling modes, and effects of second-order analysis are investigated through case study of 2 temporary bridges.

  • PDF

Effect of lateral restraint on the buckling behaviour of plates under non-uniform edge compression

  • Bedair, Osama K.
    • Structural Engineering and Mechanics
    • /
    • 제5권1호
    • /
    • pp.85-104
    • /
    • 1997
  • The paper investigates the influence of lateral restraint on the buckling behaviour of plate under non-uniform compression. The unloaded edges are assumed to be partially restrained against translation in the plane of the plate and the distributions of the resulting forces acting on the plate are shown. The stability analysis is done numerically using the Galerkin method and various strategies the economize the numerical implementation are presented. Results are obtained showing the variation of the buckling load, from free edge translation to fully restrained, with unloaded edges simply supported, clamped and partially restrained against rotation for various plate aspect ratios and stress gradient coefficients. An apparent decrease in the buckling load is observed due to these destabilizing forces acting in the plate and changes in the buckling modes are observed by increasing the intensity of the lateral restraint. A comparison is made between the budding loads predicted from various formulas in stability standards based on free edge translation and the values derived from the present investigation. A difference of about 34% in the predicted buckling load and different buckling mode were found.

Buckling Analysis of Grid-Stiffened Composite Plates Using Hybrid Element with Drilling D.O.F.

  • Cho, Maenghyo;Kim, Won-Bae
    • Computational Structural Engineering : An International Journal
    • /
    • 제3권1호
    • /
    • pp.19-29
    • /
    • 2003
  • In the present study, finite element linear buckling analysis is performed for grid-stiffened composite plates. A hybrid element with drilling degrees of freedom is employed to reduce the effect of the sensitivity of mesh distortion and to match the degrees of freedom between skins and stiffeners. The preliminary static stress distribution is analyzed for the determination of accurate load distribution. Parametric study of grid structures is performed and three types of buckling modes are observed. The maximum limit of buckling load was found at the local skin-buckling mode. In order to maximize buckling loads, stiffened panels need to be designed to be buckled in skin-buckling mode.

  • PDF

A size-dependent study on buckling and post-buckling behavior of imperfect piezo-flexomagnetic nano-plate strips

  • Momeni-Khabisi, Hamed;Tahani, Masoud
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.427-440
    • /
    • 2022
  • In the present study, the nonlocal strain gradient theory is used to predict the size-dependent buckling and post-buckling behavior of geometrically imperfect nano-scale piezo-flexomagnetic plate strips in two modes of direct and converse flexomagnetic effects. The first-order shear deformation plate theory is used to analyze analytically nano-strips with simply supported boundary conditions. The nonlinear governing equations of equilibrium and associated boundary conditions are derived using the principle of minimum total potential energy with consideration of the von Kármán-type of geometric nonlinearity. A closed-form solution of governing differential equation is obtained, which is easily usable for engineers and designers. To validate the presented formulations, whenever possible, a comparison with the results found in the open literature is reported for buckling loads. A parametric study is presented to examine the effect of scaling parameters, plate slenderness ratio, temperature, the mid-plane initial rise, flexomagnetic coefficient, different temperature distributions, and magnetic potential, in case of the converse flexomagnetic effect, on buckling and post-buckling loads in detail.

Shear behaviour of thin-walled composite cold-formed steel/PE-ECC beams

  • Ahmed M. Sheta;Xing Ma;Yan Zhuge;Mohamed A. ElGawady;Julie E. Mills;El-Sayed Abd-Elaal
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.75-92
    • /
    • 2023
  • The novel composite cold-formed steel (CFS)/engineered cementitious composites (ECC) beams have been recently presented. The new composite section exhibited superior structural performance as a flexural member, benefiting from the lightweight thin-walled CFS sections with improved buckling and torsional properties due to the restraints provided by thinlayered ECC. This paper investigated the shear performance of the new composite CFS/ECC section. Twenty-eight simply supported beams, with a shear span-to-depth ratio of 1.0, were assembled back-to-back and tested under a 3-point loading scheme. Bare CFS, composite CFS/ECC utilising ECC with Polyethylene fibres (PE-ECC), composite CFS/MOR, and CFS/HSC utilising high-strength mortar (MOR) and high-strength concrete (HSC) as replacements for PE-ECC were compared. Different failure modes were observed in tests: shear buckling modes in bare CFS sections, contact shear buckling modes in composite CFS/MOR and CFS/HSC sections, and shear yielding or block shear rupture in composite CFS/ECC sections. As a result, composite CFS/ECC sections showed up to 96.0% improvement in shear capacities over bare CFS, 28.0% improvement over composite CFS/MOR and 13.0% over composite CFS/HSC sections, although MOR and HSC were with higher compressive strength than PE-ECC. Finally, shear strength prediction formulae are proposed for the new composite sections after considering the contributions from the CFS and ECC components.

제형파형강판의 전단거동에 영향을 미치는 기하학적 요소에 대한 연구 (A Study on the Geometric Parameters that Influence the Shear Buckling of Trapezoidally Corrugated Webs)

  • 길흥배;이승록;이학은;이필구
    • 한국강구조학회 논문집
    • /
    • 제15권5호통권66호
    • /
    • pp.591-601
    • /
    • 2003
  • 파형강판은 파형 형상으로 가공된 강판으로 높은 면내, 면외 방향의 강성을 갖으며, 건물, 교량 등으로 적용도가 높아지고 있다. 파형강판을 플레이트 거더나 프리스트레스트 박스거더교의 복부판으로 적용하면, 파형강판의 Accordion효과에 의해 플랜지가 휨응력을 복부판이 전단응력을 대부분 지지하는 효율적인 구조를 얻을 수 있다. 전단응력을 받는 파형 강판은 전체좌굴, 국부좌굴, 및 연성좌굴에 의해 내하력을 상실할 수 있다. 좌굴 강도에 미치는 기하학적인 인자들의 영향을 파악하기 위하여 유한요소해석법을 이용한 좌굴해석이 수행되었다. 해석결과는 복부판의 좌굴강도와 좌굴형상이 개개 인자들에 의존할 뿐만 아니라 패널의 세장비와 같은 두 개의 변수가 상호작용하는 복합변수에 의존하는 것을 보여주었다.

Secondary buckling analysis of spherical caps

  • Kato, Shiro;Chiba, Yoshinao;Mutoh, Itaru
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.715-728
    • /
    • 1997
  • The aim of this paper is to investigate the secondary buckling behaviour and mode-coupling of spherical caps under uniformly external pressure. The analysis makes use of a rotational finite shell element on the basis of strain-displacement relations according to Koiter's shell theory (Small Finite Deflections). The post-buckling behaviours after a bifurcation point are analyzed precisely by considering multi-mode coupling between several higher order harmonic wave numbers: and on the way of post-buckling path the positive definiteness of incremental stiffness matrix of uncoupled modes is examined step by step. The secondary buckling point that has zero eigen-value of incremental stiffness matrix and the corresponding secondary mode are obtained, moreover, the secondary post-buckling path is traced.

Elastic distortional buckling of overhanging beams

  • Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.37-47
    • /
    • 1996
  • The paper considers the elastic distortional buckling of overhanging beams, which consist of an internal segment with a cantilevered segment continuous over an internal support. The beams were considered loaded by a concentrated load at the cantilever tip, and the beams were either partially restrained or laterally restrained over the internal support. An efficient line-type finite element developed previously by the author was modified to incorporate loading remote from the shear centre, as well as to allow for lateral buckling without distortion. Buckling loads were obtained for a range of geometry when the load was placed on the top flange, at the shear centre or on the bottom flange. Buckling mode shapes were also obtained, and conclusions drawn regarding the influence of distortion on the overall buckling load.