• 제목/요약/키워드: buckling and free vibration

검색결과 123건 처리시간 0.026초

Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates

  • Khadir, Adnan I.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • 제11권6호
    • /
    • pp.621-640
    • /
    • 2021
  • Effect of thickness stretching on mechanical behavior of functionally graded (FG) carbon nanotubes reinforced composite (CNTRC) laminated nanoplates resting on elastic foundation is analyzed in this paper using a novel quasi 3D higher-order shear deformation theory. The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Single-walled carbon nanotubes (SWCNTs) are the reinforced elements and are distributed with four power-law functions which are, uniform distribution, V-distribution, O-distribution and X-distribution. To cover various boundary conditions, an analytical solution is developed based on Galerkin method to solve the governing equilibrium equations by considering the nonlocal strain gradient theory. A modified two-dimensional variable Winkler elastic foundation is proposed in this study for the first time. A parametric study is executed to determine the influence of the reinforcement patterns, power-law index, nonlocal parameter, length scale parameter, thickness and aspect ratios, elastic foundation, thermal environments, and various boundary conditions on stresses, displacements, buckling loads and frequencies of the CNTRC laminated nanoplate.

일정체적 원형 변단면 보-기둥의 자유진동 및 좌굴하중 (Free Vibrations and Buckling Loads of Tapered Beam-Columns of Circular Cross-Section with Constant Volume)

  • 이병구
    • 전산구조공학
    • /
    • 제9권3호
    • /
    • pp.135-143
    • /
    • 1996
  • 일정체적의 원형단면을 갖는 변단면 보-기둥의 자유진동 및 좌굴하중을 지배하는 미분방정식을 유도하고 이를 수치해석하였다. 미분방정식에는 축하중효과를 고려하였다. 원형단면의 반경변화는 포물선식을 채택하였고, 고정-고정, 고정-회전 및 회전-회전 보-기둥의 고유진동수 및 좌굴하중을 산출하였다. 수치해석의 결과로 무차원 고유진동수와 무차원 변수들 사이의 관계 및 무차원 좌굴하중과 단면비 사이의 관계를 그림에 나타내었고, 최강기둥의 단면비와 좌굴하중을 구하였다.

  • PDF

An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions

  • Abdelaziz, Hadj Henni;Meziane, Mohamed Ait Amar;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.;Alwabli, Afaf S.
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.693-704
    • /
    • 2017
  • In this research, a simple hyperbolic shear deformation theory is developed and applied for the bending, vibration and buckling of powerly graded material (PGM) sandwich plate with various boundary conditions. The displacement field of the present model is selected based on a hyperbolic variation in the in-plane displacements across the plate's thickness. By splitting the deflection into the bending and shear parts, the number of unknowns and equations of motion of the present formulation is reduced and hence makes them simple to use. Equations of motion are obtained from Hamilton's principle. Numerical results for the natural frequencies, deflections and critical buckling loads of several types of powerly graded sandwich plates under various boundary conditions are presented. The accuracy of the present formulation is demonstrated by comparing the computed results with those available in the literature. As conclusion, this theory is as accurate as other theories available in the literature and so it becomes more attractive due to smaller number of unknowns.

Isogeometric analysis of FG polymer nanocomposite plates reinforced with reduced graphene oxide using MCST

  • Farzam, Amir;Hassani, Behrooz
    • Advances in aircraft and spacecraft science
    • /
    • 제9권1호
    • /
    • pp.69-93
    • /
    • 2022
  • Reduced graphene oxide (rGO) is one of the derivatives of graphene, which has drawn some experimental research interests in recent years however, numerical research studying the mechanical behaviors of composites made of rGO has not been taken into consideration yet. The objective of this research is to investigate the buckling, and free vibration of functionally graded reduced graphene oxide reinforced nanocomposite (FG rGORC) plates employing isogeometric analysis (IGA). The effective Young's modulus of rGORC is determined based onthe Halpin-Tsai model. Four different FG distribution types of rGO are considered varying across plate thickness. Besides, the refined plate theory is used based on Reddy's third-order function. To capture the size effect, modified couple stress theory (MCST) is employed. A comprehensive study is provided examining the effect of various parameters including rGO weight fraction, FG distribution types, boundary conditions, material length scale parameter, etc. Our obtained results show that the addition of only 1% of uniformly distributed rGO into epoxy plates leads to the fundamental frequency and critical buckling load 18% and 39% higher than those of pure epoxy plates, respectively.

A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams

  • Du, Mengjie;Liu, Jun;Ye, Wenbin;Yang, Fan;Lin, Gao
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.179-194
    • /
    • 2022
  • The bending, buckling and free vibration responses of functionally graded material (FGM) beams are investigated semi-analytically by the scaled boundary finite element method (SBFEM) in this paper. In the concepts of the SBFEM, the dimension of computational domain can be reduced by one, therefore only the axial dimension of the beam is discretized using the higher order spectral element, which reduces the amount of calculation and greatly improves the calculation efficiency. The governing equation of FGM beams is derived in detail by the means of the principle of virtual work. Compared with the higher-order beam theory, fewer parameters and simpler control equations are used. And the governing equation is transformed into a first-order ordinary differential equation by introducing intermediate variables. Analytical solutions of the governing equation can be obtained by pade series expansion in the direction of thickness. Numerical example are compared with the numerical solutions provided by the previous researchers to verify the accuracy and applicability of the proposed method. The results show that the proposed formulations can quickly converge to the reference solutions by increasing the order of higher order spectral elements, and high accuracy can be achieved by using a small number of the elements. In addition, the influence of the structural sizes, material properties and boundary conditions on the mechanical behaviors of FG beams subjected to different load types is discussed.

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.

A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate

  • Sekkal, Mohamed;Fahsi, Bouazza;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.389-401
    • /
    • 2017
  • In this work, a new higher shear deformation theory (HSDT) is developed for the free vibration and buckling of functionally graded (FG) sandwich plates. The proposed theory presents a new displacement field by using undetermined integral terms. Only four unknowns are employed in this theory, which is less than the classical first shear deformation theory (FSDT) and others HSDTs. Equations of motion are obtained via Hamilton's principle. The analytical solutions of FG sandwich plates are determined by employing the Navier method. A good agreement between the computed results and the available solutions of existing HSDTs is found to prove the accuracy of the developed theory.

곡률이 변하는 박벽 곡선보의 3차원 자유진동 및 좌굴해석 (Spatial Free Vibration and Stability Analysis of Thin-Walled Curved Beams with Variable Curvatures)

  • 서광진;민병철;김문영
    • 한국전산구조공학회논문집
    • /
    • 제13권3호
    • /
    • pp.321-328
    • /
    • 2000
  • 본 연구는 유한한 회전의 2차항을 고려한 변위장에 기초하여 변곡률을 가지는 비대칭 박벽곡선보의 해석이론을 제시한다. Vlasov의 가정에 의한 연속체의 선형화된 가상일의 원리로부터 총 포텐셜 에너지를 유도하고, 모든 변위 파라미터와 ? 함수는 도심에서 정의된다. 절점당 8개의 자유도를 가지는 박벽곡선보 요소의 개발 과정에서 3차 Hermitian 다항식이 형상함수로 이용된다. 본 연구의 타당성과 정확도를 입증하기 위하여, 일축대칭 단면을 갖는 포물선과 타원형상의 곡선보를 선택하여 3차원 자유진동해석과 안정성 해석을 수행한다. 그리고 이 결과를 ABAQUS의 쉘 요소에 의한 것과 비교한다.

  • PDF

A comprehensive computational approach to assess the influence of the material composition on vibration, bending and buckling response of FG beam lying on viscoelastic foundation

  • Brahim Laoud;Samir Benyoucef;Attia Bachiri;Rabbab Bachir Bouiadjra;Abdelouahed Tounsi;Mahmoud M Selim;Hosam A. Saad
    • Steel and Composite Structures
    • /
    • 제52권1호
    • /
    • pp.45-56
    • /
    • 2024
  • This paper proposes an analytical solution for the free vibration, bending and buckling a functionally graded (FG) beam resting on viscoelastic foundation. The materials characteristics of the FG beam are considered to be varying across the thickness according several power law functions. The governing equations are found analytically using a quasi-3D model that contains undetermined integral forms and involves few unknowns to derive. Navier's method for simply supported beam is employed to solve the problem. Numerical examples are presented and studied to demonstrate the accuracy and effectiveness of the proposed model. Then, a detailed parametric study is presented in the form of tables and graphs to study and analyze the effects of the different parameters on the response of FG beams with different material compositions resting on a viscoelastic foundation.

The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation

  • Ozturk, Baki;Coskun, Safa Bozkurt
    • Structural Engineering and Mechanics
    • /
    • 제37권4호
    • /
    • pp.415-425
    • /
    • 2011
  • In this study, the homotopy perturbation method (HPM) is applied to free vibration analysis of beam on elastic foundation. This numerical method is applied on three different axially loaded cases, namely: 1) one end fixed, the other end simply supported; 2) both ends fixed and 3) both ends simply supported cases. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, $N_r$. The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for all the cases considered in this study and the differential transform method (DTM) results available in the literature for the fixed-pinned case.