• 제목/요약/키워드: bubbles-liquid flow

검색결과 78건 처리시간 0.026초

비 혼합 2유체 열사이폰의 유동 특성에 관한 가시적 연구 (Visualization of Flow Characteristics on Thermosyphon with Immiscible Binary Working Fluid)

  • 도선엽;강환국;박승철
    • 한국산학기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.3022-3029
    • /
    • 2015
  • 본 연구에서는 물과 비 혼합 비 공비 물질을 작동 유체로 사용하는 가시화 실험 장치를 제작하여 열유속을 증가시키며 시간에 따른 벽면온도 특성과 내부 유동를 카메라로 연속 촬영하며 2유체 열사이폰의 내부의 유동 및 열전달 특성에 대하여 가시적 방법으로 실험을 수행하여 실험 결과로부터 다음과 같은 결론을 얻을 수 있었다. 물과 FC40을 사용한 비 혼합 2유체 열사이폰은 열유속의 크기에 따라 자연대류, 펄스비등, 연속비등의 세가지 영역으로 구분 되었으며 비등은 증기압이 낮은 물에서 발생하였다. 자연대류에서는 액체 풀에서 물의 증발과 대류 액막 유동이 발생하였다. 액체 풀에서 비등이 발생할 때에는 강한 비등에 의하여 FC40과 물의 혼합된 상태로 전 영역에 걸쳐 기-액 이상 유동이 발생하였다.

단일 카메라 입자영상유속계를 이용한 이상유동 기포율 측정방법 (On the Measurement Technique of Void Fraction by Single Camera Two Phase PIV)

  • 최동환;성재용;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1558-1563
    • /
    • 2004
  • A measurement technique for the void fraction and the bubble dynamics in gas-liquid two-phase flows has been proposed using a time-resolved two-phase PIV system. For the three-dimensional evaluation of the bubble information, both the images from the front and side views are simultaneously recorded into a high speed CCD camera by reflecting the side image into the front view with the help of a $45^{\circ}$ oriented mirror. Then, a stereo-matching technique is applied to calculate the void fraction, bubble size and shape. To obtain the rising bubble velocities, the 2-frame PTV method was applied. Consequently, the present technique shows good feasibility for the measurements of the volume fractions, mean diameters, aspect ratios and velocities of the bubbles at the three-dimensional point of view.

  • PDF

조수기용 증기분사 열교환기에 대한 모델링 (Modeling of Steam Injection Heater for Fresh Water Generator)

  • 홍철현;이억수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.877-885
    • /
    • 2008
  • Steam injection heater is the most widely used method for fresh water generator throughout industry. This method is often chosen because of its simplicity. The steam bubbles condense and give up their heat to the surrounding liquid. Experimental study on steam injection heater has been performed in order to find the effect of major parameter. And conservation equation and Bernoulli obstruction theory are used for numerical simulation model of vapor flow-rate. Qualitative comparisons between simulations and measurements show a good agreement and the simulation models are thereby verified.

고온의 기포접촉에 의한 에탄올 회수공정에 관한 연구 (Study on the Ethanol Recovery Process using Dircet Contact Heat Exchange)

  • 이원영;여상도;최용희
    • 한국식품과학회지
    • /
    • 제27권2호
    • /
    • pp.176-180
    • /
    • 1995
  • 고온의 기포를 액상에 분산시켜 형성되는 기-액상간의 온도구배로 인한 열 및 물질전달 방법인 고온기포접촉법을 도입하여 수용액으로부터 에탄올의 분리능력을 검토하고 회수율을 살펴보았다. 기포의 높은 분산속도는 액상내에서 jet regime을 형성하였으며 온도와 유속에 따라 air-water stripping coefficient는 각각 $5{\sim}10,\;1{\sim}1.5$배 증가하였다. 액상과 기포의 온도차가 클수록 stripping coefficient의 값이 높았으며 유속보다는 온도가 분리능력에 더 큰 영향을 미치는 것으로 나타났다. 회수율은 고온일 때와 유속이 클수록 증가해 $150^{\circ}C$, 84.88m/min 일때 80%의 회수율을 나타내었다. 고온기포접촉법은 stripping coefficient가 에탄올의 초기농도에 큰 영향을 받지 않으므로, 알코올 발효공정에서 배양액의 농도가 5% 이상 높아지면 알코올 생성균주의 생장장해를 일으켜 알코올 생산 수율이 떨어지는 생산물 저해작용을 줄이고 알코올을 회수하는 공정으로 응용될 수 있다.

  • PDF

단일 가열봉의 재관수 시 2상유동 및 벽면 열전달에 관한 실험적 연구 (Experimental investigation of two-phase flow and wall heat transfer during reflood of single rod heater)

  • 박영재;김형대
    • 한국가시화정보학회지
    • /
    • 제18권3호
    • /
    • pp.23-34
    • /
    • 2020
  • Two-phase flow and heat transfer characteristics during the reflood phase of a single heated rod in the KHU reflood experimental facility were examined. Two-phase flow behavior during the reflooding experiment was carefully visualized along with transient temperature measurement at a point inside the heated rod. By numerically solving one-dimensional inverse heat conduction equation using the measured temperature data, time-resolved wall heat flux and temperature histories at the interface of the heated rod and coolant were obtained. Once water coolant was injected into the test section from the bottom to reflood the heated rod of >700℃, vast vapor bubbles and droplets were generated near the reflood front and dispersed flow film boiling consisted of continuous vapor flow and tiny liquid droplets appeared in the upper part. Following the dispersed flow film boiling, inverted annular/slug/churn flow film boiling regimes were sequentially observed and the wall temperature gradually decreased. When so-called minimum film boiling temperature reached, the stable vapor film between the heated rod and coolant was suddenly collapsed, resulting in the quenching transition from film boiling into nucleate boiling. The moving speed of the quench front measured in the present study showed a good agreement with prediction by a correlation in literature. The obtained results revealed that typical two-phase flow and heat transfer behaviors during the reflood phase of overheated fuel rods in light water nuclear reactors are well reproduced in the KHU facility. Thus, the verified reflood experimental facility can be used to explore the effects of other affecting parameters, such as CRUD, on the reflood heat transfer behaviors in practical nuclear reactors.

Numerical Study on Taylor Bubble Rising in Pipes

  • Shin, Seung Chul;Lee, Gang Nam;Jung, Kwang Hyo;Park, Hyun Jung;Park, Il Ryong;Suh, Sung-bu
    • 한국해양공학회지
    • /
    • 제35권1호
    • /
    • pp.38-49
    • /
    • 2021
  • Slug flow is the most common multi-phase flow encountered in oil and gas industry. In this study, the hydrodynamic features of flow in pipes investigated numerically using computational fluid dynamic (CFD) simulations for the effect of slug flow on the vertical and bent pipeline. The compressible Reynold averaged Navier-Stokes (RANS) equation was used as the governing equation, with the volume of fluid (VOF) method to capture the outline of the bubble in a pipeline. The simulations were tested for the grid and time step convergence, and validated with the experimental and theoretical results for the main hydrodynamic characteristics of the Taylor bubble, i.e., bubble shape, terminal velocity of bubble, and the liquid film velocity. The slug flow was simulated with various air and water injection velocities in the pipeline. The simulations revealed the effect of slug flow as the pressure occurring in the wall of the pipeline. The peak pressure and pressure oscillations were observed, and those magnitudes and trends were compared with the change in air and water injection velocities. The mechanism of the peak pressures was studied in relation with the change in bubble length, and the maximum peak pressures were investigated for the different positions and velocities of the air and water in the pipeline. The pressure oscillations were investigated in comparison with the bubble length in the pipe and the oscillation was provided with the application of damping. The pressures were compared with the case of a bent pipe, and a 1.5 times higher pressures was observed due to the compression of the bubbles at the corner of the bent. These findings can be used as a basic data for further studies and designs on pipeline systems with multi-phase flow.

온수 가열 바닥 난방 시스템용 고성능 버블젯 루프 히트파이프 개발 (Development of High Performance Bubble Jet Loop Heat Pipe for Hot Water Floor Heating System)

  • 김종수;권용하;김정웅
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.23-28
    • /
    • 2014
  • In order to increase the performance of conventional hot water floor heating system, the bubble jet loop heat pipe for the system was developed. This experiment was conducted under next conditions : Working fluid was R-134a, charging ratio was 50%. A temperature of hot water, room temperature and flow rate were $60^{\circ}C$, $15^{\circ}C$ and 0.5~1.5 kg/min, respectively. The experimental results, show that bubble jet loop heat pipe had a high effective thermal conductivity of $4714kW/m^{\circ}C$ and a sufficient heat flux of $73W/m^2$ to heat the floor to $35^{\circ}C$ in case of the 1.5 kg/min of flow rate. So the bubble jet loop heat pipe has a possibility for appling of the floor heating system. Additionally, the visualization of bubble jet loop heat pipe was performed to understand the operating principle. Bubbles made by the narrow gap between inner tube and outer tube of evaporating part generate pulsation at liquid surface of working fluid. The pulsation had slug flow and wavy flow. So working fluid circulates in the bubble jet loop heat pipe as two phase flow pattern. And large amount of heat is transferred by the latent heat from evaporating part to condensing part.

CuS 침전의 기포흡착분리에 관한 연구 (Bubble Adsorptive Separation of CuS Precipitates)

  • 신정호;박경기;정갑섭;이근희
    • 공업화학
    • /
    • 제9권1호
    • /
    • pp.20-27
    • /
    • 1998
  • CTAB에 의한 CuS 침전 미립자의 응집과 기포 흡착특성을 고찰하였다. CTAB의 기포흡착은 Langmuir흡착식을 따르며, 포말간 본체액의 동반을 고려한 회분해석으로부터 구한 흡착열은 3700cal/mol로 나타났다. CTAB에 의한 CuS미립자의 기포흡착은 기포-입자간 충돌흡착으로 설명되었고, 흡착분리에 대한 최적 농도비는 CuS의 최적 응집농도비와 일치하였으며, 그 값은 [CTAB] 대 [CuS]가 0.1로 얻어졌다. 기포에 의한 포집효율은 pH와 CTAB농도 등에 의존하나 공기의 유량에는 무관하였으며, 최대 포집효율은 최적 첨가농도에서 0.0002로 나타났다. 또한 Cu-Cd-Zn 황화물의 혼합계에서 CTAB를 사용한 기포흡착의 경우 ZnS의 선택적 분리가 가능하였다.

  • PDF

IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

  • Ali, Majid;Yan, Changqi;Sun, Zhongning;Gu, Haifeng;Wang, Junlong;Khurram, Mehboob
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.203-210
    • /
    • 2013
  • The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate ($Na2S_2O_3$) in water to remove the gaseous iodine ($I_2$) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of $0.99{\pm}0.001$ has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

Breakdown Characteristics of SF6 and Liquefied SF6 at Decreased Temperature

  • Choi, Eun-Hyeok;Kim, Ki-Chai;Lee, Kwang-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권5호
    • /
    • pp.765-771
    • /
    • 2012
  • $SF_6$ gas has been used as arc quenching and insulating medium for high and extra high voltage switching devices due to its high dielectric strength, its excellent arc-quenching capabilities, its high chemical stability and non toxicity. Despite of its significant contributions, the gas was classified as one of the greenhouse gas in the Kyoto Protocol. Thus, many researches are conducted to find out the replacement materials and to develop the $SF_6$ gas useless electrical equipment. This paper describes experiments on the temperature change-related breakdown characteristics of $SF_6$ gas ($SF_6$) and $SF_6$ liquid ($LSF_6$) in a model GIS(Gas-Insulated Switchgear) chamber in order to show the possibility of more stable and safe usages of $SF_6$ gas. The breakdown characteristics are classified into three stages, namely the gas stage of $SF_6$ according to Paschen's law, the coexisting stage of $SF_6$ gas with liquid in considerable deviation at lower temperature, and the stage of $LSF_6$ and remaining air. The result shows that the ability of the $LSF_6$ insulation is higher than the high-pressurized $SF_6$. Moreover, it reveals that the breakdown characteristics of $LSF_6$ are produced by bubble-formed $LSF_6$ evaporation and bubbles caused by high electric emission and the corona. In addition, the property of dielectric breakdown of $LSF_6$ is determined by electrode form, electrode arrangement, bubble formation and movement, arc extinguishing capacity of the media, difficulty in corona formation, and the distance between electrodes. The bubble formation and flow separation phenomena were identified for $LSF_6$. It provides fundamental data not only for $SF_6$ gas useless equipment but also for electric insulation design of high-temperature superconductor and cryogenic equipment machinery, which will be developed in future studies.