Bubble Adsorptive Separation of CuS Precipitates

CuS 침전의 기포흡착분리에 관한 연구

  • Shin, Jeong Ho (Dept. of Chem. Eng., College of Eng., Pusan National Univ.) ;
  • Park, Kyung Kee (Dept. of Chem. Eng., College of Eng., Pusan National Univ.) ;
  • Jeong, Kap Seop (Dept. of Ind. Chem., Dongmyung Junior College) ;
  • Lee, Geun Hee (Dept. of Chem. Eng., College of Eng., Pusan National Univ.)
  • 신정호 (부산대학교 공과대학 화학공학과) ;
  • 박경기 (부산대학교 공과대학 화학공학과) ;
  • 정갑섭 (동명전문대학 공업화학과) ;
  • 이근희 (부산대학교 공과대학 화학공학과)
  • Received : 1996.06.11
  • Accepted : 1997.12.01
  • Published : 1998.02.10

Abstract

The characteristics of the bubble adsorptive separation of CTAB(cetyltrimethylammonium bromide) and CuS precipitates was investigated. The Langmuir adsorption equation was adequate at very low concentration of CTAB, and the adsorption heat was determined from the batch analysis considering the bulk liquid accompanied between bubbles. The adsorption mechanism was explained with the collision adsorption between bubbles and precipitate particles. The optimum concentration ratio of (CTAB) to (CuS) for adsorptive separation was 0.1 and coincided with the ratio for the coagulation of particles. The collection efficiency was depended on pH and CTAB concentration but independent of the air flow rate, and the maximum efficiency was 0.0002. The selective separation of ZnS from the mixture of Cu-Cd-Zn sulfides was obtained by the bubble adsorption with CTAB.

CTAB에 의한 CuS 침전 미립자의 응집과 기포 흡착특성을 고찰하였다. CTAB의 기포흡착은 Langmuir흡착식을 따르며, 포말간 본체액의 동반을 고려한 회분해석으로부터 구한 흡착열은 3700cal/mol로 나타났다. CTAB에 의한 CuS미립자의 기포흡착은 기포-입자간 충돌흡착으로 설명되었고, 흡착분리에 대한 최적 농도비는 CuS의 최적 응집농도비와 일치하였으며, 그 값은 [CTAB] 대 [CuS]가 0.1로 얻어졌다. 기포에 의한 포집효율은 pH와 CTAB농도 등에 의존하나 공기의 유량에는 무관하였으며, 최대 포집효율은 최적 첨가농도에서 0.0002로 나타났다. 또한 Cu-Cd-Zn 황화물의 혼합계에서 CTAB를 사용한 기포흡착의 경우 ZnS의 선택적 분리가 가능하였다.

Keywords

References

  1. Adsorptive Bubble Separation Techniques R. Lemlich
  2. Sep. Sci. v.9 B. B. Ferguson;C. Hinkle;D. D. Wilson
  3. J. Water Poll. Control Fed. v.48 S. W. Reed;F. E. Woodward
  4. J. Appl. Chem. Biotechnol. v.23 D. Pearson;J. M. Shirley
  5. Water Research Centre Report TR2 Water Clarification by Flotation-3 R. F. Packham;W. N. Richard
  6. J. Kor. Chem. Soc. v.38 S. O. Heur;Y. S. Kim
  7. Filt. and Sep. v.13 H. Lundgren
  8. J. Water Poll. Control Fed. v.50 R. G. Luthy;R. E. Selleck;T. R. Galloway
  9. Kagaku Kogaku Ronbunshu v.4 M. Takahasi;K. Kato
  10. Hwahak Konghak v.22 J. H. Shin;S. S. Lee;K. S. Jeong
  11. Thesis, Pusan National Univ. Y. J. Lee
  12. Ind. and Eng. Chem. Fundam. v.9 G. N. Shah;R. Lemlich
  13. Canadian J. Chem. Eng. v.51 D. Reay;G. A. Ratcliff
  14. Chem. Eng. Sci. v.31 G. J. Jameson
  15. Sep. Sci. Technol. v.13 E. J. Chou;Y. Okamoto
  16. J. Am. Chem. Soc. v.76 H. P. Pohl
  17. Adsorption Engineering M. Suzuki
  18. Principles of Adsorption and Adsorption Process D. M. Ruthven
  19. Physical Chemistry of Surface(4th ed.) A. W. Adamson
  20. Interfacial Phenomena J. T. Davies;E. K. Rideal
  21. Aquatic Chemistry(2nd ed.) W. Stumm;J. J. Morgan