• 제목/요약/키워드: bubble point temperature

검색결과 34건 처리시간 0.03초

TLC 비접촉 온도측정과 중력장에서 열모세관 현상 구명 (A Measurement of Temperature by TLC without Contact and A Study of Thermocapillary Flow under Ground-based Conditions)

  • 엄용균;유재봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1071-1075
    • /
    • 2003
  • In a closed square cavity filled with a liquid, a cooled the upper horizontal wail and a heated the lower horizontal wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In such case the flow phenomena near an air bubble under a cooled horizontal wall were investigated. The temperature and the flow fields were studied by using the Thermo-sensitive Liquid-Crystal and the image processing. The qualitative analysis for the temperature and the flow fields were carried out by applying the image processing technique to the original data. Injecting bubble at the center point of upper cooled wall, the symmetry shape of two vortexes near an air bubble was observed. The bubble size increased, the size of velocity and the magnitude of velocity increased. In spite of elapsed time, a pair of two vortexes was the unique and steady-state flow in a square cavity and wasn't induce to the other flow in the surround region.

  • PDF

TLC 를 이용한 사각공동내의 열전도 영역에 기포의 형성으로 인한 열전달 현상 구명 (A Study of Heat Transfer Phenomena due to a Formed Gas Bubble under Heat-Conduction Domain in A Closed Square Cavity)

  • 엄용균;유재봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.85-89
    • /
    • 2003
  • In a closed square cavity filled with a liquid, a cooled the upper horizontal wall and a heated the lower horizontal wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In such case the flow phenomena near an air bubble under a cooled horizontal wall were investigated. The temperature and the flow fields were studied by using the Thermo-sensitive Liquid-Crystal and the image processing. The qualitative analysis for the temperature and the flow fields were carried out by applying the image processing technique to the original data. Injecting bubble at the center point of upper cooled wall, the symmetry shape of two vortexes near an air bubble was observed. The bubble size increased, the size of velocity and the magnitude of velocity increased. In spite of elapsed time, a pair of two vortexes was the unique and steady-state flow in a square cavity and wasn't induce to the other flow in the surround region.

  • PDF

Poly(ethylene-co-octene) - Ethylene - 1-Octene 3성분계 혼합물의 상거동 (Phase Behavior of Ternary Mixture of Poly(ethylene-co-octene) - Ethylene - 1-Octene)

  • 이상호;손진언;정성윤;한상훈
    • Elastomers and Composites
    • /
    • 제41권2호
    • /
    • pp.116-124
    • /
    • 2006
  • Poly(ethylene-co-15.3 mole% octene) ($PEO_{15}$) - 1-옥텐 2성분계 혼합물과 $PEO_{15}$와 (에틸렌 + 1-옥텐) 혼합용매로 이루어진 3성분계 혼합물의 상거동을 $160^{\circ}C$와 1,000 bar의 영역까지 측정하였다. $PEO_{15}$ - 에틸렌 - 1-옥텐 혼합물에서 에틸렌의 함량이 증가함에 따라 cloud-point 곡선이 측정되는 압력이 급격하게 높아졌다. 에틸렌 함량이 18 wt% 보다 낮을 경우, $PEO_{15}$ -에틸렌 - 1-옥텐 혼합물에서 bubble-point 곡선과 cloud-point 곡선이 모두 관측되었다. 에틸렌 함량이 증가함에 따라 $PEO_{15}$ - 에틸렌 - 1-옥텐 혼합물에서 bubble-point 곡선이 관측되는 온도범위는 좁아졌으며, $PEO_{15}$ - 에틸렌 - 1-옥텐 혼합물이 단일상으로 존재하는 온도-압력 영역이 현저히 감소하였다. 에틸렌 함량에 따라 단일상 영역이 감소하는 것은 $PEO_{15}$와 (에틸렌 + 1-옥텐) 혼합용매 사이에 작용하는 분산인력이 줄어들기 때문이다. 에틸렌을 36 wt% 보다 적게 함유한 $PEO_{15}$ - 에틸렌 - 1-옥텐 혼합물의 단일상 영역은 온도가 높아짐에 따라 감소하였다. 이와는 대조적으로 에틸렌을 50 wt% 보다 많게 함유한 $PEO_{15}$ - 에틸렌 - 1-옥텐 혼합물의 단일상 영역은 온도가 녹아짐에 따라 증가하였다. $PEO_{15}$ 용해도를 낮추는 혼합용매 사이의 극성인력과 $PEO_{15}$ 용해도를 높이는 혼합용매의 밀도는 온도가 낮아짐에 따라 증가한다. 에틸렌 함량이 50 wt% 보다 많을 경우, 혼합용매들의 극성인력 효과가 밀도 효과보다 커서 온도가 낮아짐에 따라 cloud-point 압력은 증가하였다. 에틸렌 함량이 50 wt% 보다 적을 경우, 혼합용매들의 극성인력 효과가 밀도 효과보다 작아서 온도가 낮아짐에 따라 cloud-point 압력은 감소하였다.

2 kW급 개방 캐소드형 연료전지 출력 향상을 위한 온습도 제어 (Performance Increase for a 2 kW Open Cathode Type Fuel Cell Using Temperature/Humidity Control)

  • 원위위;최미화;양석란;김영배
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.369-376
    • /
    • 2017
  • Temperature and humidity regulations of an open-cathode PEM fuel cell with balance of plant (BOP) are developed in this study. The axial fan, a bubble humidifier, set of solenoid valves and a controller are used to perform temperature and humidity control simultaneously. A fuzzy controller is designed, and it shows its superiority in real-time controlling for strong non-linear dynamical fuel cell system. The axial fan speed is used for temperature control and solenoid valve on/off signal of the bubble humidifier is used for humidity control. The axial fan speed is controlled to keep the fuel cell temperature within the desired point. Meanwhile, the bubble humidifier is utilized to moisture hydrogen to manage the water content of membrane. The results show that the proposed fuzzy controller effectively increases the output power of 10% for a PEM fuel cell.

미세기포 오존과 생물여과 시스템을 이용한 생활하수의 3차 처리에 관한 연구 (Tertiary Treatment of Sewage by Micro Bubble Ozone and BAF System)

  • 강동한;장영호;김종수;김극태
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.877-884
    • /
    • 2011
  • In this paper, the removal characteristics of dissolved organic carbon (DOCs) by micro bubble ozonation process and $O_3/UV$ process were comparatively studied. In the point of DOC removing reaction coefficient, micro bubble ozonation system and $O_3/UV$ process had not significant difference, $0.0120sec^{-1}$ and $0.0141sec^{-1}$. Therefore micro bubble ozonation process is more suitable for tertiary treatment of sewage in the point of installation and maintenance cost-reducing. The optimum ozone injection rate was 2.0 g $O_3/g$ DOC and HRT was 3 min for the micro bubble ozonation process. The removal efficiency of DOC and SUVA in micro bubble ozonation system was 32.8% and 58.3% respective. Biological aerated filter (BAF) process was installed to remove soluble organic material increased by micro bubble ozonation system. And the effluent BOD of BAF was below 1.0 mg/L. In the view of cost-effectiveness, $O_3/BAF$ process was more profitable than $O_3/UV/BAF$ process for tertiary treatment of sewage. In order to nitrify ammonia in the BAF process completely, $NH_4{^+}-N$ concentration in the influent water of BAF should be designed considering low water temperature in the winter season.

R14와 질소 혼합유체를 사용하는 극저온 열사이펀의 과도상태 거동 (Transient behavior of cryogenic thermosiphon working with R14 and nitrogen mixture)

  • 이지성;정상권
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권1호
    • /
    • pp.66-70
    • /
    • 2010
  • The operational temperature range of thermosiphon is generally limited from the critical point to the triple point of the working fluid to maintain two-phase state. Thermosiphon with mixed working fluid has a potential to widen the operational temperature range. In this study, the physical behavior of mixed working fluid during the transient operation of thermosiphon was analyzed with temperature-mole fraction diagram. The condenser and the evaporator temperature variations were explained by the dew line and the bubble line of the mixture. It is encouraging that the thermosiphon operation commences early with larger fraction of high boiling point component, but the temperature gap between the condenser and the evaporator due to the separation of two components has a negative effect on the officient cool down process.

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • 제13권1호
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF

과냉 비등류의 실제건도와 보이드율에 관한 연구 (A Study on the Real Quality and Void Fraction of Subcooled Refrigerant Flow)

  • 김종헌;김춘식;김경근;오철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권2호
    • /
    • pp.36-43
    • /
    • 1993
  • Real quality and axial void fraction distribution of subcooled refrigerant flow is very important to predict the heat transfer rate and pressure drop in the design of refrigerating system. In the subcooled boiling region, the liquid bulk temperature is still below the corresponding saturation temperature. But beyond the net vapor generation point, bubble detachment is occured actively from the vapor layer formed on the wall. A reliable method to predict the vapor fraction from the liquid bulk temperature is suggested in this paper. And also the actual quality of the subcooled R-113 flow is calculated in the range of 261-1239kg/$m^2$s mass velocity and 10-30K subcooling.

  • PDF

Study on the insulation of HTS bushing at cryogenic temperature

  • Kim, W.J.;Shin, H.S.;Park, T.S.;Kim, S.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권3호
    • /
    • pp.20-23
    • /
    • 2013
  • In the development of high temperature superconducting (HTS) power machines, HTS bushing is one of core technologies. In particular, the insulation body with sheds and electrical insulation at cryogenic temperature have attracted a great deal of interest from the view point of the size, weight and efficiency of bushing. In this study, the electrical and mechanical characteristics of various insulators for body in liquid nitrogen ($LN_2$) were investigated. And the surface discharge distance, collar length of GFRP sheds were studied. To emit bubbles between sheds, the shape and arrangement of shed were studied. The shed structure for 60 kV class HTS bushing were designed with regular arrangement.