• 제목/요약/키워드: bubble phenomenon

검색결과 71건 처리시간 0.028초

LPDi기관의 인젝터내 기포발생현상의 가시화 및 해석 (Visualization and Analysis of Bubbling Phenomenon in the Injector of LPDi Engine)

  • 노기철;이종태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.454-459
    • /
    • 2003
  • The one of the most important subject to develop a LPDi engine is to suppress the generation of bubble inside LPG direct injector. For the purpose of this, in this study, the analogy visualization injector to visualize the generation and behavior of bubble, is manufactured and the bubbling phenomenon and behaviors are visualized and studied. The bubble inside the injector is generated at injection hole and after rising by buoyancy, it disappear around the top of a nozzle. The number of bubble generated is little changed regardless of the lapse of time but it is increased remarkably as the temperature around the injector is increased. With injection, the temperature around the injector at which the bubble is generated in_cylinder is much lower than that without injection because the transient pressure drop of fuel by injection.

  • PDF

퍼라이트팽창의 동적해석 (Dynamic Analysis of Expansion in Perlite)

  • 함영민
    • 공업화학
    • /
    • 제23권2호
    • /
    • pp.143-147
    • /
    • 2012
  • 퍼라이트의 팽창은 고온에서 수초안에 이루어지므로 팽창현상을 실험으로 확인이 어려워 이를 해석하기 위한 버블팽창모사가 필요하다. 이를 위해 용융 퍼라이트 내에 매우 작은 미세 버블이 존재하며 수분 증기가 버블 쪽으로 확산되어 버블이 성장하고 퍼라이트가 팽창하는 모델을 세워 팽창모사를 수행하였다. 수분증기의 확산으로 버블이 성장하여 퍼라이트가 팽창될 때 퍼라이트의 동적 온도는 감소하였다. 버블의 동적압력은 퍼라이트 용융상 내에서 수분 증기가 확산함에 따라 초기에는 증가하지만, 버블의 급격한 팽창 이후에는 오히려 감소함을 확인하였다.

Vapor Bubble Nucleation : A Microscopic Phenomenon

  • Kwak, Ho-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1271-1287
    • /
    • 2004
  • In this article, vapor bubble nucleation in liquid and the evaporation process of a liquid droplet at its superheat limit were discussed from the viewpoint of molecular clustering (molecular cluster model for bubble nucleation). For the vapor bubble formation, the energy barrier against bubble nucleation was estimated by the molecular interaction due to the London dispersion force. Bubble nucleation by quantum tunneling in liquid helium under negative pressure near the absolute zero temperature and bubble nucleation on cavity free micro heaters were also presented as the homogenous nucleation processes.

액상 LPG 직접 분사식 기관 개발을 위한 인젝터 내 기포발생현상의 원인 규명에 관한 기초연구 (A Fundamental Study on the Investigation of Bubbling Phenomenon in the Injector for the Development the LPDi Engine)

  • 노기철;이종태
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.1-8
    • /
    • 2006
  • One of the most important subjects to develop a LPDi engine is to suppress the bubble generated inside the liquid LPG direct injector. For the purpose of this, the analogy visualization injector to visualize the generation and behaviors of bubble is manufactured, and the bubbling phenomenon and behaviors of bubble are visualized and investigated according to the change of the temperature around an injector wall, fuel pressure and a needle configuration. As results, it was found that the bubble inside the injector is generated around an injector hole and after rising by buoyancy it disappears around the top of a nozzle. The number of bubbles generated is little changed regardless of the lapse of time but it remarkably increases as the temperature around the injector increases. Also, it was known that as the sac volume in LPDi injector decreases the generation of bubble is more active and the rising velocity of bubble generated is increased.

자유표면이 상승기포의 파괴에 미치는 영향에 대한 수치해석적 연구 (A NUMERICAL STUDY OF THE FREE SURFACE EFFECT ON RISING BUBBLE)

  • 윤익로;신승원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.376-379
    • /
    • 2010
  • Bubble rising phenomenon is widely founded in many industrial applications such as a stream generator in power plant. Many experimental and numerical researches have been already performed to predict dynamic behavior of the bubble rising process. Recently numerical approaches are getting popular since it can offer much detailed information which is almost impossible to obtain from the experiments. Rising bubble could penetrate through the top free surface which makes the problem much more complicate in addition to the phase changing effect even with latest numerical techniques. In this paper, the top free surface effect on rising bubble has been investigated. The gas-liquid interface was explicitly tracked using high-order Level Contour Reconstruction Method(LCRM) which is a hybridization of Front-Tracking and Level-Set method. Break-up behavior of rising bubble at free surface showed different characteristics with initial diameter of bubble.

  • PDF

Semiempirical model for wet scrubbing of bubble rising in liquid pool of sodium-cooled fast reactor

  • Pradeep, Arjun;Sharma, Anil Kumar
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.849-853
    • /
    • 2018
  • Mechanistic calculations for wet scrubbing of aerosol/vapor from gas bubble rising in liquid pool are essential to safety of sodium-cooled fast reactor. Hence, scrubbing of volatile fission product from mixed gas bubble rising in sodium pool is presented in this study. To understand this phenomenon, a theoretical model has been setup based on classical theories of aerosol/vapor removal from bubble rising through liquid pools. The model simulates pool scrubbing of sodium iodide aerosol and cesium vapor from a rising mixed gas bubble containing xenon as the inert species. The scrubbing of aerosol and vapor are modeled based on deposition mechanisms and Fick's law of diffusion, respectively. Studies were performed to determine the effect of various key parameters on wet scrubbing. It is observed that for higher vapor diffusion coefficient in gas bubble, the scrubbing efficiency is higher. For aerosols, the cut-off size above which the scrubbing efficiency becomes significant was also determined. The study evaluates the retention capability of liquid sodium used in sodium-cooled fast reactor for its safe operation.

큰 압력 진폭에 의해 구동되는 기포진동체의 비선형 거동 특성 (Nonlinear Behaviors of a Gas-filled Bubble Oscillator with Large Amplitude of Excitation)

  • 김동혁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.116-124
    • /
    • 2002
  • The bubble model by Keller and Prosperetti is adapted to solve the nonlinear oscillation of a gas bubble. This formulation leads to accurate results since it introduces the energy equation instead of the polytropic assumption for the bubble interior. The numerical method used in this study is stable enough to handle large amplitude of bubble oscillation. The numerical results show some interesting nonlinear phenomena fur the bubble oscillator. The excitation changes the natural frequency of the bubble and makes some harmonic resonances at $f/f_0=1/2, 1/3$ and so on. The natural frequency of a bubble oscillator decreases compared with the linear case result, which means that the nonlinear bubble oscillation system is a "softening"system. In addition, the frequency response curve jumps up or down at a certain frequency. It is also found that there exist multi-valued regions in the frequency response curve depending on the initial conditions of bubble. The dependency of the bubble motion on the initial condition can generate extremely large pressure and temperature which might be the cause of the acoustic cavitation and the sonoluminescence.inescence.

포화상태 풀비등시 단일기포의 성장에 관한 연구 (Study on the Single Bubble Growth During Nucleate Boiling at Saturated Pool)

  • 김정배;이한춘;오병도;김무환
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.169-179
    • /
    • 2005
  • Nucleate boiling experiments on heating surface of constant wall temperature were performed using R113 for almost saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition of heating surface and to measure the heat flow rate with high temporal and spatial resolutions. Bubble images during the bubble growth were taken as 5000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble growth behavior was analyzed using the new dimensionless parameters for each growth regions to permit comparisons with previous experimental results at the same scale. We found that the new dimensionless parameters can describe the whole growth region as initial and later (thermal) respectively. The comparisons showed good agreement in the initial and thermal growth regions. In the initial growth region including surface tension controlled, transition and inertia controlled regions as divided by Robinson and Judd, the bubble growth rate showed that the bubble radius was proportional to $t^{2/3}$ regardless of working fluids and heating conditions. And in the thermal growth region as also called asymptotic region, the bubble showed a growth rate that was proportional to $t^{1/5}$, also. Those growth rates were slower than the growth rates proposed in previous analytical analyses. The required heat flow rate for the volume change of the observed bubble was estimated to be larger than the heat flow rate measured at the wall. Heat, which is different from the instantaneous heat supplied through the heating wall, can be estimated as being transferred through the interface between bubble and liquid even with saturated pool condition. This phenomenon under a saturated pool condition needs to be analyzed and the data from this study can supply the good experimental data with the precise boundary condition (constant wall temperature).

기포군 영상분석을 통한 초음파 캐비테이션 현상의 변화 관찰 (Ultrasonic Cavitation Effect Observation Using Bubble Cloud Image Analysis)

  • 노시철;김주영;김진수;강정훈;최흥호
    • 센서학회지
    • /
    • 제20권2호
    • /
    • pp.124-130
    • /
    • 2011
  • In this study, in order to evaluate the yield of bubble by ultrasonic cavitation in HIFU sonication, the bubble image analysis was performed. The changing phenomenon of cavitation effect according to the sonication condition was discussed by analyzing the bubble image. Especially the appearance of bubble cloud, the size of micro-bubble, and the yield of bubble were considered. The 500 KHz and 1.1 MHz concave type ultrasonic transducers were used for HIFU sonication. Computer controlled digital camera was used to obtain the bubble image, and the binary image processing(binarization coefficient : 0.15) was performed to analyze them. In results of 500 KHz and 1.1 MHz transducer, the area of bubble cloud was increased in proportion to the rise in sonication intensity($R^2$ : 0.7031 and 0.811). The mean size of single microbubble was measured as 98.18 um in 500 KHz sonication, and 63.38 um in 1.1 MHz sonication. In addition, the amount of produced bubble was increased in proportion to sonication intensity. Through the result of this study and further study for variable image processing method, the quantitative evaluation of ultrasonic cavitation effects in HIFU operation could be possible with the linearity associated with the sonication conditions.

포화상태 풀비등시 단일기포의 성장에 관한 연구 (Study on the single bubble growth at saturated pool boiling)

  • 김정배;이한춘;오병도;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1933-1938
    • /
    • 2004
  • Nucleate boiling experiments with constant wall temperature of heating surface were performed using R113 for almost saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition and to measure the heat flow rate with high temporal and spatial resolutions. Bubble images during the bubble growth were taken as 5000 frames a sec using a high-speed CCD camera synchronized with the heat flow rate measurements. The geometry of the bubble during growth time could be obtained from the captured bubble images. The bubble growth behavior was analyzed using the new dimensionless parameters for each growth regions to permit comparisons with previous results at the same scale. We found that the new dimensionless parameters can describe the whole growth region as initial and later respectively. The comparisons showed good agreement in the initial and thermal growth regions. The required heat flow rate for the volume change of the observed bubble was estimated to be larger than the instantaneous heat flow rate measured at the wall. Heat, which is different from the instantaneous heat supplied through the heating wall, can be estimated as being transferred through the interface between bubble and liquid even with saturated pool conditions. This phenomenon under a saturated pool condition needs to be analyzed and the data from this study can supply the good experimental data with the precise boundary condition (constant wall temperature).

  • PDF