• Title/Summary/Keyword: bubble effect

Search Result 426, Processing Time 0.025 seconds

Study on Bubble Generation and Size by Dimensionally Stable Anode in Electroflotation Process (전기부상공정에서 촉매성 산화물 전극에 따른 기포 발생량과 크기에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1189-1195
    • /
    • 2007
  • Small gas bubbles are used in many environmental and industrial processes for solid-liquid separations or to facilitate heat and mass transfer between phases. This study examines some of the factors that affect the bubble volume and size processed in the EF (electroflotation) process. The effect of electrode material, NaCl dosage, current and electrode distance were studied. The results showed that the generated bubble volume with electrode material lay in: Pt/Ti ${\fallingdotseq}$ Ru/Ti ${\fallingdotseq}$ Ir/Ti > Ti electrode. The more NaCl dosage was high, the smaller bubble was generated due to the low electric power. Bubble generation was increased with increase of current. With the increase of NaCl dosage, bubble generation was increased at same electric power (16.2 W). Generated bubble volume was not affected by electrode distance. However, no clear trends in bubble size as a function of these parameters were evident.

Investigation of single bubble behavior under rolling motions using multiphase MPS method on GPU

  • Basit, Muhammad Abdul;Tian, Wenxi;Chen, Ronghua;Basit, Romana;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1810-1820
    • /
    • 2021
  • Study of single bubble behavior under rolling motions can prove useful for fundamental understanding of flow field inside the modern small modular nuclear reactors. The objective of the present study is to simulate the influence of rolling conditions on single rising bubble in a liquid using multiphase Moving Particle Semi-implicit (MPS) method. Rolling force term was added to 2D Navier-Stokes equations and a computer program was written using C language employing OpenACC to port the code to GPU. Computational results obtained were found to be in good agreement with the results available in literature. The impact of rolling parameters on trajectory and velocity of the rising bubble has been studied. It has been found that bubble rise velocity increases with rolling amplitude due to modification of flow field around the bubble. It has also been concluded that the oscillations of free surface, caused by rolling, influence the bubble trajectory. Furthermore, it has been discovered that smaller vessel width reduces the impact of rolling motions on the rising bubble. The effect of liquid viscosity on bubble rising under rolling was also investigated and it was found that effects of rolling became more pronounced with the increase of liquid viscosity.

Temperature History of Concrete at Cold Weather Depending on the Kinds of Insulating Sheet (단열양생시트 종류 변화에 따른 한중콘크리트의 온도이력)

  • Jeon, Chung-Keun;Kim, Jong;Shin, Dong-An;Oh, Seon-Kyo;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.618-621
    • /
    • 2006
  • This paper is to investigate temperature history of cold weather concrete depending on insulation curing sheet kinds. Insulating effect according to curing sheet is shown in order of 5 layer bubble sheet, combination of PE form and 3 layer bubble sheet and 3 layer bubble sheet. It maintained above $10^{\circ}C$ of minimum temperature until the completion of initial curing period when bubble curing sheet was supplied regardless of curing sheet kinds. Five layer bubble curing sheet secure higher curing temperature than any other curing sheet applied in this experiment by as much as $2{\sim}3^{\circ}C$, which performed remarkable insulation effect. Concrete applied with curing sheet secured above $65^{\circ}D{\cdot}D$ of maturity, at which concrete had 5MPa of compressive strength at 3 days.

  • PDF

Effect of Water Presence in Double Layer Bubble Sheet on Heat Insulation Capability in Cold Weather (이중버블시트의 함수상태가 단열보온 효과에 미치는 영향에 대한 특성분석)

  • Baek, Dae-Hyun;Hong, Seak-Min;Son, Ho-Jung;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.445-446
    • /
    • 2010
  • Water existed inside of bubble sheet applied at the job site sometimes results in undesirable heat insulation capability of bubble sheet. Therefore, the objective of this paper is to examine experimentally the effect of water presence in bubble sheet on heat insulation capability and strength of the concrete cured with double bubble sheet.

  • PDF

Effect of channel hight on Bubble growth under Saturated Nucleate Pool Boiling for Various Channel Height using Heater with Artificial Cavity (인공 캐비티를 가진 히터를 이용한 가열면의 채널 높이가 풀비등시 기포성장에 미치는 영향에 대한 기초연구)

  • Kim, Jeong-Bae;Park, Moon-Hee;Jeon, Woo-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.93-99
    • /
    • 2010
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R113 for various channel heights under saturated pool condition. A circular heater of 1mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of channel height on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, and bubble shapes. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL (2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석)

  • Shin, S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

A Numerical Study on the Bubble Noise and the Tip Vortex Cavitation Inception

  • Park, Jin-Keun;Georges L. Chahine
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.13-33
    • /
    • 2003
  • This paper presents a numerical study on tip vortex cavitation inception predictions based on non-spherical bubble dynamics including splitting and jet noise emission. A brief summary of the numerical method and its validation against a laboratory experiment are presented. The behavior of bubble nuclei is studied in a tip vortex flow field at two Reynolds numbers, provided by a viscous flow solver. The bubble behavior is simulated by an axisymmetric potential flow solver with the effect of surrounding viscous flow taken into account using one way coupling. The effects of bubble nucleus size and Reynolds number are studied. An effort to model the bubble splitting at lower cavitation numbers is also described.

Semiempirical model for wet scrubbing of bubble rising in liquid pool of sodium-cooled fast reactor

  • Pradeep, Arjun;Sharma, Anil Kumar
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.849-853
    • /
    • 2018
  • Mechanistic calculations for wet scrubbing of aerosol/vapor from gas bubble rising in liquid pool are essential to safety of sodium-cooled fast reactor. Hence, scrubbing of volatile fission product from mixed gas bubble rising in sodium pool is presented in this study. To understand this phenomenon, a theoretical model has been setup based on classical theories of aerosol/vapor removal from bubble rising through liquid pools. The model simulates pool scrubbing of sodium iodide aerosol and cesium vapor from a rising mixed gas bubble containing xenon as the inert species. The scrubbing of aerosol and vapor are modeled based on deposition mechanisms and Fick's law of diffusion, respectively. Studies were performed to determine the effect of various key parameters on wet scrubbing. It is observed that for higher vapor diffusion coefficient in gas bubble, the scrubbing efficiency is higher. For aerosols, the cut-off size above which the scrubbing efficiency becomes significant was also determined. The study evaluates the retention capability of liquid sodium used in sodium-cooled fast reactor for its safe operation.

Preliminary numerical study of single bubble dynamics in swirl flow using volume of fluid method

  • Li, Zhongchun;Qiu, Zhifang;Du, Sijia;Ding, Shuhua;Bao, Hui;Song, Xiaoming;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1119-1126
    • /
    • 2021
  • Spacer grid with mixing vane had been widely used in nuclear reactor core. One of the main feather of spacer grid with mixing vane was that strong swirl flow was formed after the spacer grid. The swirl flow not only changed the bubble generation in the near wall field, but also affected the bubble behaviors in the center region of the subchannel. The interaction between bubble and the swirl flow was one of the basic phenomena for the two phase flow modeling in fuel assembly. To obatin better understanding on the bubble behaviors in swirl flow, full three dimension numerical simulations were conducted in the present paper. The swirl flow was assumed in the cylindral calculation domain. The bubble interface was captured by Volume Of Fluid (VOF) method. The properties of saturated water and steam at different pressure were applied in the simulation. The bubble trajectory, motion, shape and force were obtained based on the bubble parameters captured by VOF. The simulation cases in the present study included single bubble with different size, at different angular velocity conditions and at different pressure conditions. The results indicated that bubble migrated to the center in swirl flow with spiral motion type. The lateral migration was mainly related to shear stress magnitude and bubble size. The bubble moved toward the center with high velocity when the swirl magnitude was high. The largest bubble had the highest lateral migration velocity in the present study range. The effect of pressure was small when bubble size was the same. The prelimenery simulation result would be beneficial for better understanding complex two phase flow phenomena in fuel assembly with spacer grid.

Effect of the Kind of Modified Bubble Sheets on the Temperature Profiles and Crack Reduction of the Concrete under Hot Weather (표면개량 버블시트 종류 변화가 서중환경 콘크리트의 온도 및 균열발생에 미치는 영향)

  • Lee, Sang-Woon;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2018
  • There are various quality deteriorations of concrete such as plastic, drying shrinkage due to abrupt moisture evaporation, slump loss and cold joint under hot weather condition. To protect from above deteriorations, several kinds of modified bubble sheets have been applied to secure heat insulation performance. But, there is not enough application cases of bubble sheets at job site under hot weather condition. The objective of the paper is to investigate the temperature profile and crack occurrence of the concrete covered with five different kinds of surface curing sheets, which is placed under hot weather condition. Single layer transparent bubble sheet, white colored bubble sheet, aluminum metalizing bubble sheet and PE film are adopted for surface curing sheets. Test results indicated that application of aluminum metalizing bubble sheet had most favorable effect on the reduction of on temperature rise and on the crack reduction of concrete. But due to larger reflection of light by aluminum, it brings about visual pollution to the workers. Hence, the application of white colored bubble sheet can be the most desirable alternative to protect the concrete from hot weather in the field.