• 제목/요약/키워드: broadband energy harvesting

검색결과 7건 처리시간 0.01초

광대역 압전 에너지 하베스팅 기술 (Broadband Piezoelectric Energy Harvesting Technology)

  • 이동규;이연정;송현철
    • 세라미스트
    • /
    • 제22권1호
    • /
    • pp.56-69
    • /
    • 2019
  • Recent advances in low-power sensors and transmitters are driving the search for standalone power sources that utilize unused ambient energy. These energy harvesters can alleviate the issues related to the installation and maintenance of sensors. Particularly piezoelectric energy harvesters, with the ability to convert ambient mechanical energy into useful electricity, have received significant attention due to their high energy density, low cost and operational stability over wide temperature and pressure conditions. In order to maximize the generated electrical power, the natural frequency of the piezoelectric energy harvester should be matched with the dominant frequency of ambient vibrations. However, piezoelectric energy harvesters typically exhibit a narrow bandwidth, thus, it becomes difficult to operate near resonance under broadband ambient vibration conditions. Therefore, the resonating of energy harvesters is critical to generate maximum output power under ambient vibration conditions. For this, energy harvesters should have broadband natural frequency or actively tunable natural frequency with ambient vibrations. Here, we review the most plausible broadband energy harvesting techniques of the multi-resonance, nonlinearity, and self-resonance tuning. The operation mechanisms and recent representative studies of each technique are introduced and the advantages and disadvantages of each method are discussed. In addition, we look into the future research direction for the broadband energy harvester.

Applications of metamaterials: Cloaking, Photonics, and Energy Harvesting

  • Kim, Kyoungsik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.77.2-77.2
    • /
    • 2015
  • Recently, metamaterials attracted much attention because of the potential applications for superlens, cloaking and high precision sensors. We developed several dielectric metamaterials for enhancing antireflection or light trapping capability in solar energy harvesting devices. Colloidal lithography and electrochemical anodization process were employed to fabricate self-assembed nano- and microscale dielectric metamaterials in a simple and cost-effective manner. We improved broadband light absorption in c-Si, a-Si, and organic semiconductor layer by employing polystyrene (PS) islands integrated Si conical-frustum arrays, resonant PS nanosphere arrays, and diffusive alumina nanowire arrays, respectively. We also demonstrated thin metal coated alumina nanowire array which is utilized as an efficient light-to-heat conversion layer of solar steam generating devices. The scalable design and adaptable fabrication route to our light management nanostructures will be promising in applications of solar energy harvesting system. On the other hands, broadband invisible cloaks, which continuously work while elastically deforming, are developed using smart metamaterials made of photonic and elastic crystals. A self-adjustable, nearly lossless, and broadband (10-12GHz) smart meatamaterials have great potentials for applications in antenna system and military stealth technology.

  • PDF

Broadband energy harvester for varied tram vibration frequency using 2-DOF mass-spring-damper system

  • Hamza Umar;Christopher Mullen;Soobum Lee;Jaeyun Lee;Jaehoon Kim
    • Smart Structures and Systems
    • /
    • 제32권6호
    • /
    • pp.383-391
    • /
    • 2023
  • Energy harvesting in trams may become a prevalent source of passive energy generation due to the high density of vibrational energy, and this may help power structural health monitoring systems for the trams. This paper presents a broadband vibrational energy harvesting device design that utilizes a varied frequency from a tram vehicle using a 2 DOF vibrational system combined with electromagnetic energy conversion. This paper will demonstrate stepwise optimization processes to determine mechanical parameters for frequency tuning to adjust to the trams' operational conditions, and electromagnetic parameters for the whole system design to maximize power output. The initial optimization will determine 5 important design parameters in a 2 DOF vibrational system, namely the masses (m1, m2 (and spring constants (k1, k2, k3). The second step will use these parameters as initial guesses for the second optimization which will maintain the ratios of these parameters and present electrical parameters to maximize the power output from this system. The obtained values indicated a successful demonstration of design optimization as the average power generated increased from 1.475 mW to 17.44 mW (around 12 times).

A New Vibration Energy Harvester Using Magnetoelectric Transducer

  • Yang, Jin;Wen, Yumei;Li, Ping;Dai, Xianzhi;Li, Ming
    • Journal of Magnetics
    • /
    • 제16권2호
    • /
    • pp.150-156
    • /
    • 2011
  • Magnetoelectric (ME) transducers were originally intended for magnetic field sensors but have recently been used in vibration energy harvesting. In this paper, a new broadband vibration energy harvester has been designed and fabricated to be efficiently applicable over a range of source frequencies, which consists of two cantilever beams, two magnetoelectric (ME) transducers and a magnetic circuit. The effects of the structure parameters, such as the non-linear magnetic forces of the ME transducers and the magnetic field distribution of the magnetic circuit, are analyzed for achieving the optimal vibration energy harvesting performances. A prototype is fabricated and tested, and the experimental results on the performances show that the harvester has bandwidths of 5.6 Hz, and a maximum power of 0.25 mW under an acceleration of 0.2 g (with g = $9.8\;ms^2$).

다중모드 회로망 분석을 이용한 광대역 혼 안테나의 효율적인 설계 (Effective Design of the Broadband Horn Antenna Using Multi-mode Network Analysis)

  • 문정익;조인귀;김성민
    • 전기전자학회논문지
    • /
    • 제16권4호
    • /
    • pp.297-303
    • /
    • 2012
  • 본 논문에서는 다중대역 렉테나가 장착된 RF 에너지 수집 시스템의 성능 확인에 사용되는 광대역 이중리지 혼 안테나를 다중모드 회로망 분석을 이용하여 효율적으로 설계하는 방법을 제안하고 있다. 다중모드 회로망 분석을 이용하여 천이장치와 혼에 대한 각각의 고차모드 산란 파라미터를 얻어 설계에 적용하였다. 그 결과 기존 방법에 비해 계산시간이 많이 단축되었으며 안테나의 정재파비를 계산한 결과 전자기장 해석을 적용한 것과 거의 유사하였으며, 측정치와 높은 일치도를 보였다. 설계된 광대역 혼 안테나는 660~6360 MHz 대역폭과 6~13.7 dBi의 최대 방사 이득을 가진다.

캔틸레버형 모듈을 이용한 광대역 압전 하베스터 개발 및 평가 (Development and Evaluation of Broadband Piezoelectric Harvesters using a Cantilever-Type Module)

  • 박범근;백종후
    • 센서학회지
    • /
    • 제29권4호
    • /
    • pp.261-265
    • /
    • 2020
  • In cantilever type piezoelectric energy harvester, the amount of power generation decreases rapidly when outside a certain frequency. The thickness and weight of the cantilever metal plate were modified to develop cantilevers that could produce high power over a wide frequency range. The thicker the cantilever, the higher the power in the higher frequency range. As the weight of the mass increased, the cantilever tended to generate higher power, and the frequency band decreased. A 0.6 mm metal plate cantilever that had a mass of 3.3 g generated power that exceeded 3 mW within the 91-102 Hz range, with average and output values of 9.484 mW and 20.748 mW, respectively, at 99 Hz.

벤더형 모듈을 이용한 광대역 압전 하베스터 연구 (Study of Broadband Piezoelectric Harvester using the Bender-Type Module)

  • 김창일;권태형;여서영;윤지선;정영훈;홍연우;조정호;백종후
    • 센서학회지
    • /
    • 제27권2호
    • /
    • pp.112-117
    • /
    • 2018
  • In this study, a bender-type piezoelectric energy harvester was fabricated and evaluated to compensate for the disadvantages of high-power generation only in the resonance frequency range of a piezoelectric harvester using a piezoelectric cantilever. The generated power was investigated according to various changes in the vibration environment. Compared with the piezoelectric cantilever module, the bender-type piezoelectric module showed a larger number of peak voltages. The primary peak voltage shifted toward the low frequency when the spring was coupled to the bender-type piezoelectric module. The harvester of the three bender-type modules had a vibration frequency exceeding 1 mW in the 34-45 Hz range and generated 3.112 mW of power at the vibration frequency of 38 Hz. The harvester of the six bender-type modules had a vibration frequency exceeding 1 mW in the 31-45 Hz range and generated 3.081 mW of power at the vibration frequency of 35 Hz.