• Title/Summary/Keyword: brittle materials

Search Result 711, Processing Time 0.028 seconds

The Failure Analysis of Boiler Tube for High Temperature and High Pressure Service (고온고압용 보일러 튜브의 파손 원인분석)

  • Lee, Jong-Hun;Yu, Wi-Do
    • 연구논문집
    • /
    • s.30
    • /
    • pp.121-128
    • /
    • 2000
  • The failed tube received for this study has been used for approximately 10 year at $330^{\circ}C$ in a steam production boiler tube was fractured in the transversed direction to tube length, and fracture mode was typically intergranulas type without the plastic deformation. The fracture surface was covered by the oxide scale formed from the intermal high pressure steam at high temperature. The microstructure was not nearly thermal-degraded during the service. From this result, we can conclude that the oxide film was proferentialy formed into the grainboundary and this grainboundary oxide film was brittle-fractured by the thermal stress in the longitudinal direction to the tube brittle intergranular fracture mode.

  • PDF

Study of Hot Salt Stress Corrosion Crack Initiation of Alloy IMI 834 by using DC Potential Drop Method

  • Pustode, Mangesh D.;Dewangan, Bhupendra;Raja, V.S.;Paulose, Neeta;Babu, Narendra
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.203-208
    • /
    • 2016
  • DC potential drop technique was employed during the slow strain rate tests to study the hot salt stress corrosion crack (HSSCC) initiation at 300 and $400^{\circ}C$. Threshold stresses for HSSCC initiation were found to about 88 % of the yield strength at both temperatures, but the time from crack initiation to final failure (${\Delta}t_{scc}$) decreased significantly with temperature, which reflects larger tendency for brittle fracture and secondary cracking. The brittle fracture features consisted of transgranular cracking through the primary ${\alpha}$ grain and discontinuous faceted cracking through the transformed ${\beta}$ grains.

Friction and Wear at Ceramic Coated Surfaces of Aluminum Alloy (알루미늄 합금표면에 코팅된 세라믹재의 마찰마멸 특성)

  • 공호성;권오관;김형선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3083-3093
    • /
    • 1993
  • Friction and wear at ceramic coated surfaces of aluminum alloy were experimentally studied using a Ring-on-Block wear test machine. Ceramic materials coated on aluminum alloy surfaces were WC, CrC, $Al_{2}O_{3}$ by a plasma spray; and $Al_{2}O_{3}$,$Al_{2}SiO_{5}$, $Na_{2}B_{4}O_{7}$,$Na_{4}P_{2}O_{7}$, and $Al_{2}O_{3}-ZrO_{2}$ composite coating by an Anodic Spark Depositon. They were tested under the sliding wet contact and compared with aluminum alloys and steels. Test results showed that ceramic coated surfaces, in general, have better anti-wear property than those of aluminum alloys due to increase in the surface hardness ; however, they also showed higher coefficients of friction and changes in wear mechanisms, resulting in brittle fractures.

Development of the Smart Concrete Using the Voltage Control Type Sensor (전압제어형 센서를 이용한 스마트 콘크리트의 개발)

  • Kim Ie Sung;Lee Soo-Gon;Kim Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.169-172
    • /
    • 2005
  • Today, peoples have much interest about safety while an abnormal weather phenomenon is weighted increased. R.C buildings are consisting of main loaded members. Concrete are brittle materials and they are which come to brittle fracture rapidly by progress of cracks. With the exchange of such research in inside and outside of the country, the structure measurement method of having used PZT and the optical fiber (FBG) will be the actual condition which has accomplished the stock. Specially, seismic activity that gives damage to construction and members happens in on time. Therefore, the purpose of this study is the fundamental research which detects damagesof main members using the compound sensor which consisted of the radio sensors of resistance, PZT, and FM system.

  • PDF

The high-rate brittle microplane concrete model: Part I: bounding curves and quasi-static fit to material property data

  • Adley, Mark D.;Frank, Andreas O.;Danielson, Kent T.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.293-310
    • /
    • 2012
  • This paper discusses a new constitutive model called the high-rate brittle microplane (HRBM) model and also presents the details of a new software package called the Virtual Materials Laboratory (VML). The VML software package was developed to address the challenges of fitting complex material models such as the HRBM model to material property test data and to study the behavior of those models under a wide variety of stress- and strain-paths. VML employs Continuous Evolutionary Algorithms (CEA) in conjunction with gradient search methods to create automatic fitting algorithms to determine constitutive model parameters. The VML code is used to fit the new HRBM model to a well-characterized conventional strength concrete called WES5000. Finally, the ability of the new HRBM model to provide high-fidelity simulations of material property experiments is demonstrated by comparing HRBM simulations to laboratory material property data.

Analysis of the shear failure process of masonry by means of a meso-scopic mechanical modeling approach

  • Wang, Shuhong;Tang, Chun'an;Jia, Peng
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.181-194
    • /
    • 2006
  • The masonry is a complex heterogeneous material and its shear deformation and fracture is associated with very complicated progressive failures in masonry structure, and is investigated in this paper using a mesoscopic mechanical modelling, Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the newly developed Material Failure Process Analysis (MFPA) system was brought out to simulate the cracking process of masonry, which was considered as a three-phase composite of the block phase, the mortar phase and the block-mortar interfaces. The crack propagation processes simulated with this model shows good agreement with those of experimental observations by other researchers. This finding indicates that the shear fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level. Some brittle materials are so weak in tension relative to shear that tensile rather than shear fractures are generated in pure shear loading.

Plasticity of Amorphous Alloys: 1. Homogeneous Deformation (비정질 합금의 소성 1: 균일변형)

  • Park, Kyoung-Won;Lee, Chang-Myeon;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.759-772
    • /
    • 2009
  • Amorphous alloys, in addition to being promising materials for a variety of practical applications, provide an excellent test bed for evaluating our understanding of the underlying physics on deformation in amorphous solids. Like many amorphous materials, amorphous alloys can exhibit either homogeneous or inhomogeneous deformation depending on the stress level. The mode of deformation has a strong influence on whether the material behavior is classified as ductile or brittle. It was observed that the characteristics of these deformations are largely dependent on the atomic-scale structures of the alloys and determine the amount of the plastic deformation prior to failure. In this study, the structural features that control the homogeneous deformation of amorphous alloys are outlined on the basis on experiments and molecular dynamics simulations.

Orientation Measurement and Related Mechanical Properties of Directionally Solidified NiAl/$Ni_3Al$ Two-Phase Alloys (일방향응고된 NiAl/$Ni_3Al$ 2상합금의 방향성 측정 및 기계적 특성 평가)

  • Lee, Hye-Jung;Park, No-Jin;Choi, Hwan;Lee, Je-Hyun;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.96-103
    • /
    • 2010
  • $Ni_3Al$ is known as a good high temperature structural material because of high yield strength at ambient temperature. However, it is too brittle to use as a structural material because of their weak grain boundary. In this work, orientation measurement and related mechanical properties of directionally solidified NiAl/$Ni_3Al$ two-phase alloys with various compositions (Ni-23~27 at.%Al) were investigated for developing multi-phase DS-processed alloys with the growth rates of 10, 50 and 100 ${\mu}m/s$ in a modified Bridgeman type furnace. It was found that the multi-phase microstructures such as the $\gamma$ dendrite +${\gamma}'$ matrix duplex microstructure was formed in the hypoeutectic composition of 23 at.%Al, $\beta$ dendrite +${\gamma}'$ matrix duplex microstructure in the hypereutectic composition of 26 and 27 at.%Al. And ${\gamma}'$ single phase was formed in the composition of 24.5 and 25 at.%Al. The hypoeutectic alloy including $\gamma$ dendrites with ${\gamma}'$ matrix showed a large elongation of over 70% at room temperature. However, the room-temperature tensile elongation decreased with increasing Al contents because the volume fraction of brittle $\beta$ dendrites in the ductile ${\gamma}'$ matrix increased.

A Study on Material Degradation Evaluation of 9Cr1MoVNb Steel by Micromechanics Test Method (미소역학 시험기법에 의한 9Cr1MoVNb강의 열화도 평가)

  • Baek, Seung-Se;Na, Sung-Hoon;Yoo, Hyun-Chul;Lee, Song-In;Ahn, Haeng-Gun;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.105-110
    • /
    • 2000
  • The Micromechanics test is new test method which uses comparatively smaller specimen than that required in conventional material tests. There are several methods, such as small-specimen creep test, the continuous indentation test, and small punch(SP) test. Among them, the small punch(SP) test method has been applied to many evaluation fields, such as a ductile-brittle transition temperature, stress corrosion cracking, hydrogen embrittlement, and fracture properties of advanced materials like FGM or MMC. In this study, the small punch(SP) test is performed to evaluate the mechanical properties at high/low temperature from $-196^{\circ}C$ to $650^{\circ}C$ and the material degradation for virgin and aged materials of 9Cr1MoVNb steel which has been recently developed. The ${\Delta}P/{\Delta}{\delta}$ parameter defined a slope in plastic membrane stretching region of SP load-displacement curve decreases according to the increase of specimen temperature, and that of aged materials is higher than the virgin material in all test temperatures. And the material degradation degrees of aged materials with $630^{\circ}C$ -500hrs and $630^{\circ}C$ -1000hrs are $36^{\circ}C$ and $38^{\circ}C$ respectively. These behaviors are good consistent with the results of hardness($H_v$) and maximum displacement(${\delta}_{max}$).

  • PDF

High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys (자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동)

  • Park, Jong-Soo;Sung, Si-Young;Han, Bum-Suck;Jung, Chang-Yeol;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.