• Title/Summary/Keyword: brittle fracture

Search Result 665, Processing Time 0.031 seconds

Analysis of the fracture of brittle elastic materials using a continuum damage model

  • Costa Mattos, Heraldo S.;Sampaio, Rubens
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.411-427
    • /
    • 1995
  • The most known continuum damage theories for brittle structures are suitable to model the degradation of the material due to the deformation process and the consequent initiation of a macro-crack. Nevertheless, they are not able to describe the propagation of the crack that leads, eventually, to the breakage of the structure into parts that undergo rigid body motion. This paper presents a theory, formulated from formal arguments of Continuum Mechanics, that may describe not only the degradation but also the fracture of elastic structures. The modeling of such a discontinuous phenomenon through a continuous theory is possible by taking a cohesion variable, related with the links between material points, as an additional degree of kinematical freedom. The possibilities of the proposed theory are discussed through examples.

Variation of Impact Values by Heat Treatment Temperature to Prevent Brittle Fracture of Roll Shell Steel (압연롤강의 취성파괴 방지를 위한 열처리 온도에 따른 충격치 변화에 관한 연구 (I))

  • Suh, Chang-Min;Suh, Min-Soo;Cho, Hae-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.33-39
    • /
    • 2011
  • This study involved a series of experiments, which included impact tests (drop weight & Charpy) and hardness tests under various heat treatment conditions, followed by fractography observations of Normal Roll Shell steel (NRS), Abnormal Roll Shell steel (ARS), and S25C steel, in order to analyze the cause of brittle fracture and damages in Roll Shell steel. The optimal tempering temperature was characterized for ARS and NRS.

Correlation between Interfacial Reaction and Brittle Fracture Found in Electroless Ni(P) Metallization (계면 화학반응과 무전해 니켈 금속층에서 나타나는 취성파괴와의 연관성에 관한 연구)

  • Sohn Yoon-Chul;Yu Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.41-46
    • /
    • 2005
  • A systematic investigation of shear testing was conducted to find a relationship between Ni-Sn intermetallic spatting and the brittle fracture observed in electroless Ni(P)/solder interconnection. Brittle fracture was found in the solder joints made of Sn-3.5Ag, while only ductile fracture was observed in a Cu-containing solder (Sn-3.0Ag-0.5Cu). For Sn-3.0Ag-0.5Cu joints, $(Ni,Cu)_3Sn_4$ and/or $(Cu,Ni)_6Sn_5$ compound were formed at the interface without spatting from the Ni(P) film. For Sn-3.5Ag, $Ni_3Sn_4$ compound was formed and brittle fracture occurred in solder pads where $Ni_3Sn_4$ had spalled. From the analysis of fractured surfaces, it was found that the brittle fracture occurs through the $Ni_3SnP$ layer formed between $Ni_3Sn_4$ intermetallic layer and the Ni(P) film. Since the $Ni_3SnP$ layer is getting thicker during/ after $Ni_3Sn_4$ spatting, suppression of $Ni_3Sn_4$ spatting is crucial to ensure the reliability of Ni(P)/solder system.

  • PDF

Analysis of Microcracking Behaviors of Solids under Multiple-Loading Conditions (다양한 하중 상태에서의 마이크로 크랙킹 거동 해석)

  • Kang, Sung-Soo;Kim, Hong-Gun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.23-29
    • /
    • 2007
  • Fracture behavior of brittle solids such as rocks, ceramics and concrete is closely related to microcracking. A meso-scale analysis method using the natural element method is proposed for the analysis of material damage of brittle microcracking solids. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the microcracks. The proposed meso analysis method is applied to the simulation of the microcracking behaviors of brittle solids subjected to uniaxial and biaxial macrostress. The obtained results are in good agreement with the results by computational damage mechanics model. The validity of the proposed method has been demonstrated by these numerical examples.

Effect of Al Addition on the Cryogenic-Temperature Impact Properties of Austenitic Fe-23Mn-0.4C Steels (알루미늄 첨가에 따른 오스테나이트계 Fe-23Mn-0.4C 고망간강의 극저온 충격 특성)

  • Kim, Sang-Gyu;Kim, Jae-Yoon;Yun, Tae-Hee;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.519-524
    • /
    • 2021
  • The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 ℃. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 ℃ and -196 ℃ exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.

A Study on the Grinding Characteristics of the Quartz(II) (Quartz의 연삭 특성에 관한 연구 (II))

  • Lim, J. G.;Ha, S. B.;Kim, S. H.;Choi, H.;lee, J. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.875-879
    • /
    • 2000
  • In the previous report1), the grinding characteristics of quartz were investigated. In this paper, the grinding mechanisms of brittle materials including ceramics and quartz are modeled and a new parameter SDR(Surface roughness Direction Ratio) is proposed to characterize the grinding mechanisms of such materials. A set of experiments were performed to verify the effectiveness of the suggested parameter. The experimental results indicate that the plastic deformation is the dominant material removal mode at the grinding conditions which show the higher value of SDR. In the case of quartz, the material was removed by brittle fracture in a lower value of SDR and by plastic deformation in a higher value of it. SDR is not affected by wheel mesh size when brittle fracture occured. But in the plastic deformation case, SDR value increases with wheel mesh size.

  • PDF

Effect of Load Velocity on Seismic Performance of Steel Beam-column Connection (하중속도가 강구조 보-기둥 접합부 내진성능에 미치는 영향)

  • Lee, Ki-Won;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.182-192
    • /
    • 2022
  • Brittle feature is one of the fracture behaviors of structure s and has a great influence on the seismic performance of structure materials. The load velocity acts as one of the main causes of brittle fracture, and in particular, in situations such as earthquakes, a high load velocity acts on buildings. However, most of the seismic performance evaluation of the domestic and external steel connections is conducted through static experiments. Therefore, there is a possibility that brittle fracture due to factors such as degradation of material toughness and reduction of maximum deformation rate due to high load velocity during an earthquake was not sufficiently considered in the existing seismic performance evaluation. This study conducts a static test at a low load velocity according to the existing experimental method and a dynamic test at a high load velocity using a shaking table, respectively. It compares and analyzes the fracture shape and structural performance according to the results of each experiment, and finally analyzes the effect of the load velocity size on the seismic performance of the connection.

Averaged strain energy density to assess mixed mode I/III fracture of U-notched GPPS samples

  • Saboori, Behnam;Torabi, A.R.;Berto, F.;Razavi, S.M.J.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.699-706
    • /
    • 2018
  • In the present contribution, fracture resistance of U-notched GPPS members under mixed mode I/III loading conditions is assessed by using the Averaged Strain Energy Density (ASED) criterion. This criterion has been founded based on the ASED parameter averaged over a well-defined control volume embracing the notch edge. The validation of the theoretical criterion predictions is evaluated through comparing with the results of a series of mixed mode I/III fracture tests conducted on rectangular-shaped GPPS specimens weakened by a single edge U-notch. A recently developed apparatus for mixed mode I/III fracture experiments is employed for measuring the fracture loads of the specimens. The test samples are fabricated with different notch tip radii with the aim of evaluating the influence of this major feature of the U-notched components on the mixed mode I/III fracture behavior. It is shown that the onset of brittle fracture in U-notched GPPS specimens under various combinations of tension and out-of-plane shear can well be predicted by means of the ASED criterion.

Effect of Interstitial Elements on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-2Ni Alloys (오스테나이트계 Fe-18Cr-10Mn-2Ni 합금의 연성-취성 천이 거동에 미치는 침입형 원소의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.649-654
    • /
    • 2013
  • The effect of interstitial elements on the ductile-brittle transition behavior of austenitic Fe-18Cr-10Mn-2Ni alloys with different nitrogen and carbon contents was investigated in this study. All the alloys exhibited ductile-brittle transition behavior because of unusual low-temperature brittle fracture, even though they have a faced-centered cubic structure. With the same interstitial content, the combined addition of nitrogen and carbon, compared to the sole addition of nitrogen, improved the low-temperature toughness and thus decreased the ductile-brittle transition temperature (DBTT) because this combined addition effectively enhances the metallic component of the interatomic bonds and is accompanied by good plasticity and toughness due to the increased free electron concentration. The increase in carbon content or of the carbon-to-nitrogen ratio, however, could increase the DBTT since either of these causes the occurrence of intergranular fracture that lead to the deterioration of the toughness at low temperatures. The secondary ion mass spectroscopy analysis results for the observation of carbon and nitrogen distributions confirms that the carbon and nitrogen atoms were significantly segregated to the austenite grain boundaries and then caused grain boundary embrittlement. In order to successfully develop austenitic Fe-Cr-Mn alloys for low-temperature application, therefore, more systematic study is required to determine the optimum content and ratio of carbon and nitrogen in terms of free electron concentration and grain boundary embrittlement.

WELDING HEAT-INPUT LIMIT OF ROLLED STEELS FOR BUILDING STRUCTURES (SN400BAND SN490B) BASED ON SIMULATED HAZ TESTS

  • Sakino, Yoshihiro;Horikawa, Kohsuke;Kamura, Hisaya
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.714-719
    • /
    • 2002
  • In The Great Hanshin-Awaji Earthquake, the general yield brittle fractures were observed in beam-column connections of steel building frames. Among many influencing factors which affect the general yield brittle fracture, it can be considered that fracture toughness has substantial effects. Some studies are making clear the required toughness for the base metal and the weld metal, but general values are not proposed. Moreover, it seems that it is also important to pay attention to the toughness decrease in the weld heat affected zone (weld HAZ), because the toughness decrease occurs in the HAZs of mild steel. In this paper, the relationship between toughness of simulated HAZs of "the rolled steels for building structures (SN)" and the weld heat-input limit of the SN steel are investigated, in an attempt to provide the required toughness for HAZs. The relationships between the increase of the hardness value and toughness, and changes of microstructure after weld heat-input are also discussed. The main results are summarized as follows. 1) The SN400B can keep its toughness at higher heat-inputs compare to the SN490Bs. 2) The steel grade, which becomes harder than other steel grades at the same heat-input, has smaller absorbed energy and smaller limit of heat-input. 3) The weld heat-input limit of the SN400B and the SN490B are proposed separately for some required toughness values.

  • PDF