• Title/Summary/Keyword: brillouin function

Search Result 9, Processing Time 0.024 seconds

Magnetic Susceptibilities of the Single Crystal Nd3Se4 (단결정 Nd3Se4의 자기감수율)

  • Cha, Jung-Won;Nahm, Kyun;Kim, Chul-Koo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.114-119
    • /
    • 2007
  • The single crystal $Nd_3Se_4$ with the $bcc-Th_3P_4$ type structure is grown and the temperature dependent magnetic susceptibilities are measured between 4 K and 300 K. The experimental data are compared with the theoretically calculated susceptibilities which depend on the splitting energies of the $Nd^{3+}$ ground state under the crystal field effect. We find that the magnetic susceptibility of the $Nd^{3+}$ ion in $Nd_3Se_4$ is not affected by the crystal field effect. The spontaneous magnetization curve below $T_c\;=\;53\;K$ of $Nd_3Se_4$ corresponds to the Brillouin function of $Nd_3Se_4$ with J=9/2.

Brillouin Light Scattering Study of Magnetic Anisotropy in GaAs/Fe/Au System (Brillouin Light Scattering을 이용한 GaAs/Fe/Au 구조의 자기이방성)

  • Ha, Seung-Seok;You, Chun-Yeol;Lee, Suk-Mock;Ohta, Kenta;Nozaki, Takayuk;Suzuki, Yoshishige;Roy, W. Van
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.147-153
    • /
    • 2008
  • It has been well-known that the Fe/GaAs heterostructure has a small lattice mismatch of 1.4% between Fe and GaAs, and the Fe layer is grown epitaxially on the the GaAs substrate. There are rich physics are observed in the GaAs/Fe interface, and the spininjection is actively studied due to its potential applications for spintronics devices. We fabricated Fe wedge layer in the thickness range $0{\sim}3.4$ nm on the GaAs(100) surface with 5-nm thick Au capping layer. The magnetic anisotropy of the Fe/GaAs system was investigated by employing Brillouin light scattering(BLS) measurements in this study. The spin wave excitation of Fe layer was studied as the function of intensity and the in-plane angle of external magnetic field, and thickness of Fe layer. Also these various dependences were analyzed with analytic expression of spin wave surface mode in order to determine the magnetic anisotropies. It has been found that the GaAs/Fe/Au system has additional uniaxial magnetic anisotropy, while the bulk Fe has biaxial anisotropy. The uniaxial anisotropy shows increasing dependency respected to decreasing thickness of Fe layer while biaxial anisotropy is reduced with Fe film thickness. This result allows the analysis that the uniaxial anisotropy is originated from interface between GaAs surface and Fe layer.

Phase Transition Behaviors of Lead-Free Piezoelectric (Na1/2Bi1/2TiO3)(1-x)-(BaTiO3)x (납이 포함되지 않은 압전 특성의 (Na1/2Bi1/2TiO3)(1-x)-(BaTiO3)x 상전이 거동 연구)

  • Lee, Byoungwan;Luo, Haosu;Kim, Jung Kyu
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.101-109
    • /
    • 2020
  • In this study, the phase transition behaviors of lead-free (Na1/2Bi1/2TiO3)(1-x)-(BaTiO3)x (NBT-BT) are investigated by using Brillouin spectroscopy. The elastic properties, sound velocity and absorption coefficient of NBT-BT are characterized as a function of temperature along different crystallographic axes. The temperature dependences of the elastic constants of NBT-BT near the morphotropic phase boundary are determined for the first time. The unpoled NBT-BT single crystals exhibits the typical relaxor behaviors, presenting broad acoustic and dielectric anomalies. The application of electric field induced discontinuous changes in the elastic properties at ~110℃, which indicates field-induced phase transition occurred. The electric field also changes the dielectric constant from more relaxor-like to ferroelectric-like dielectric behavior.

Analysis of Hollow Optical Fiber with Graded-Index Profile (언덕형 Hollow Optical Fiber의 전계 해석)

  • Pee, Joong-Ho;Jeong, Woo-Jin;Kim, Chang-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.493-499
    • /
    • 2006
  • Arbitrary graded-index HOF(Hollow Optical Fibers) are analyzed using the modified Airy function, and the corresponding eigenvalue equation that renders precise results is derived. For graded index HOF, the gradient of an evanescent field in hollow region could be adjusted more sharply than the conventional step-index HOF and the feasibility of more effective atom-guiding is confirmed.

Analysis of Dimension Dependent Subthreshold Swing for FinFET Under 20nm (20nm이하 FinFET의 크기변화에 따른 서브문턱스윙분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1815-1821
    • /
    • 2006
  • In this paper, the subthreshold swing has been analyzed for FinFET under channel length of 20nm. The analytical current model has been developed , including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics are used to calculate thermionic emission current and WKB(Wentzel-Kramers-Brillouin) approximation to tunneling current. The cutoff current is obtained by simple adding two currents since two current is independent. The subthreshold swings by this model are compared with those by two dimensional simulation and two values agree well. Since the tunneling current increases especially under channel length of 10nm, the characteristics of subthreshold swing is degraded. The channel and gate oxide thickness have to be fabricated as am as possible to decrease this short channel effects, and this process has to be developed. The subthreshold swings as a function of channel doping concentrations are obtained. Note that subthreshold swings are resultly constant at low doping concentration.

Analysis of Dimension Dependent Subthreshold Swing for Double Gate FinFET Under 20nm (20nm이하 이중게이트 FinFET의 크기변화에 따른 서브문턱스윙분석)

  • Jeong Hak-Gi;Lee Jong-In;Joung Dong-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.865-868
    • /
    • 2006
  • In this paper, the subthreshold swing has been analyzed for double gate FinFET under channel length of 20nm. The analytical current model has been developed, including thermionic current and tunneling current models. The potential distribution by Poisson equation and carrier distribution by Maxwell-Boltzman statistics are used to calculate thermionic emission current, and WKB(Wentzel-Framers-Brillouin) approximation to tunneling current. The cutoff current is obtained by simple adding two currents since two current is independent. The subthreshold swings by this model are compared with those by two dimensional simulation and two values are good agreement. Since the tunneling current increases especially under channel length of 10nm, the characteristics of subthreshold swing is degraded. The channel and gate oxide thickness have to be fabricated as thin as possible to decrease this short channel effects and this process has to be developed. The subthreshold swings as a function of channel doping concentrations are obtained.

  • PDF

Semi-analytical Modeling of Transition Metal Dichalcogenide (TMD)-based Tunneling Field-effect Transistors (TFETs)

  • Huh, In
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.368-372
    • /
    • 2016
  • In this paper, the physics-based analytical model of transition metal dichalcogenide (TMD)-based double-gate (DG) tunneling field-effect transistors (TFETs) is proposed. The proposed model is derived by using the two-dimensional (2-D) Landauer formula and the Wentzel-Kramers-Brillouin (WKB) approximation. For improving the accuracy, nonlinear and continuous lateral energy band profile is applied to the model. 2-D density of states (DOS) and two-band effective Hamiltonian for TMD materials are also used in order to consider the 2-D nature of TMD-based TFETs. The model is validated by using the tight-binding non-equilibrium Green's function (NEGF)-based quantum transport simulation in the case of monolayer molybdenum disulfide ($MoS_2$)-based TFETs.

  • PDF

Electronic Structure of Pd(111) using Angle-Resolved Phothemission Spectroscopy (각분해 광전자 분광법을 이용한 Pd(111)의 전자구조 연구)

  • Hwang, Do-Weon;Kang, Jeong-Soo;Hong, Jae-Hwa;Jeong, Jae-In;Moon, Jong-Ho;Kim, Kun-Ho;Lee, Jeoung-Ju;Lee, Young-Pak;Hong, Soon-Cheol;Min, Byung-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.14-24
    • /
    • 1996
  • We have investigated atomic and electronic structures of a clean Pd(111) surface using low energy electron diffraction (LEED) and angle-resolved photoemission spectroscopy (ARPES). A typical clean LEED pattern with a 3-fold symmetry has been observed, corresponding to that for an fcc (111) surface. ARPES measurements have been performed along the $\Gamma-M,\Gamma-K,\Gamma-M$TEX> symmetry lines, from which the experimental band structure of Pd(111) has been determined. The experimental band structure and work function of Pd(111) surface are found to agree well with the calculated band structure of bulk Pd and the calculated work function of Pd(111), respectively. However, the peak positions in the experimental band structure are located closer to the Fermi level than in the theoretical band structure by 0.1~0.8 eV, depending on the $\kappa$-points in the Brillouin zone. In additin, the experimental band widths are narrower than the theoretical band widths by about 0.5eV. The effects of the localized surface Pd 4d states and the Coulomb interaction between Pd 4d bulk electrons have been discussed as possible origins of such discrepancies between experiment and theory.

  • PDF

The Development of Theoretical Model for Relaxation Mechanism of Sup erparamagnetic Nano Particles (초상자성 나노 입자의 자기이완 특성에 관한 이론적 연구)

  • 장용민;황문정
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Purpose : To develop a theoretical model for magnetic relaxation behavior of the superparamagnetic nano-particle agent, which demonstrates multi-functionality such as liver- and lymp node-specificity. Based on the developed model, the computer simulation was performed to clarify the relationship between relaxation time and the applied magnetic field strength. Materials and Methods : The ultrasmall superparamagnetic iron oxide (USPIO) was encapsulated with biocompatiable polymer, to develop a relaxation model based on outsphere mechanism, which was resulting from diffusion and/or electron spin fluctuation. In addition, Brillouin function was introduced to describe the full magnetization by considering the fact that the low-field approximation, which was adapted in paramagnetic case, is no longer valid. The developed model describes therefore the T1 and T2 relaxation behavior of superparamagnetic iron oxide both in low-field and in high-field. Based on our model, the computer simulation was performed to test the relaxation behavior of superparamagnetic contrast agent over various magnetic fields using MathCad (MathCad, U.S.A.), a symbolic computation software. Results : For T1 and T2 magnetic relaxation characteristics of ultrasmall superparamagnetic iron oxide, the theoretical model showed that at low field (<1.0 Mhz), $\tau_{S1}(\tau_{S2}$, in case of T2), which is a correlation time in spectral density function, plays a major role. This suggests that realignment of nano-magnetic particles is most important at low magnetic field. On the other hand, at high field, $\tau$, which is another correlation time in spectral density function, plays a major role. Since $\tau$ is closely related to particle size, this suggests that the difference in R1 and R2 over particle sizes, at high field, is resulting not from the realignment of particles but from the particle size itself. Within normal body temperature region, the temperature dependence of T1 and T2 relaxation time showed that there is no change in T1 and T2 relaxation times at high field. Especially, T1 showed less temperature dependence compared to T2. Conclusion : We developed a theoretical model of r magnetic relaxation behavior of ultrasmall superparamagnetic iron oxide (USPIO), which was reported to show clinical multi-functionality by utilizing physical properties of nano-magnetic particle. In addition, based on the developed model, the computer simulation was performed to investigate the relationship between relaxation time of USPIO and the applied magnetic field strength.

  • PDF