• 제목/요약/키워드: bridge tower

검색결과 140건 처리시간 0.029초

Wind-induced responses and dynamic characteristics of a super-tall building under a typhoon event

  • Hua, X.G.;Xu, K.;Wang, Y.W.;Wen, Q.;Chen, Z.Q.
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.81-96
    • /
    • 2020
  • Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.

에너지 소산장치를 장착한 사장교의 지진 취약도 해석 (Seismic Fragility Analysis of a Cable-stayed Bridge with Energy Dissipation Devices)

  • 박원석;김동석;최현석;고현무
    • 한국지진공학회논문집
    • /
    • 제10권3호
    • /
    • pp.1-11
    • /
    • 2006
  • 이 논문에서는 에너지 소산장치가 장착된 사장교의 지진 취약도 해석 방법을 제시하고 에너지 소산장치의 장착 및 주탑-보강형 연결 조건에 따른 지진 취약도 변화를 살펴본다. 입력지반운동, 에너지 소산장치 특성값 및 사장교 강성 모형에 확률 변수를 도입하여 불확실성을 고려하고 에너지 소산장치의 비선형 이력거동을고려하여 시간이력 해석을 수행한다. 해석결과의 회귀분석을 통한 최대 응답과 입력지반운동 세기(intensity) 사이의 관계식으로부터 취약도 해석을 위한 소요 역량(demand)을 수립한다. 역량(capacity)에 해당하는 한계상태는 주탑 하부의 전단력, 보강형의 교축방향 변위, 케이블 장력의 변동량 그리고 강주탑의 좌굴이 고려된다. 해석 예제로서 강주탑 사장교인 제 2 진도대교 모형에 대하여 취약도 해석을 수행하였다. 취약도 해석결과 에너지 소산장치의 사용을 통하여 구속 또는 비구속 연결조건시 높은 손상확률을 보이던 한계상태에 대하여 그 손상확률을 크게 줄일 수 있음을 확인하였다.

Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Supports II

  • Kim, Duk-hyun;Han, Bong-Koo;Lee, Jung-Ho;Park, Ji-Hyun
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.220-223
    • /
    • 2000
  • A method of calculating the natural frequency corresponding to the modes of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control The concrete slab is considered as a special orthotropic plate. The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.

  • PDF

Experimental and numerical investigation of track-bridge interaction for a long-span bridge

  • Zhang, Ji;Wu, Dingjun;Li, Qi;Zhang, Yu
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.723-735
    • /
    • 2019
  • Track-bridge interaction (TBI) problem often arises from the adoption of modern continuously welded rails. Rail expansion devices (REDs) are generally required to release the intensive interaction between long-span bridges and tracks. In their necessity evaluations, the key techniques are the numerical models and methods for obtaining TBI responses. This paper thus aims to propose a preferable model and the associated procedure for TBI analysis to facilitate the designs of long-span bridges as well as the track structures. A novel friction-spring model was first developed to represent the longitudinal resistance features of fasteners with or without vertical wheel loadings, based on resistance experiments for three types of rail fasteners. This model was then utilized in the loading-history-based TBI analysis for an urban rail transit dwarf tower cable-stayed bridge installed with a RED at the middle. The finite element model of the long-span bridge for TBI analysis was established and updated by the bridge's measured natural frequencies. The additional rail stresses calculated from the TBI model under train loadings were compared with the measured ones. Overall agreements were observed between the measured and the computed results, showing that the proposed TBI model and analysis procedure can be used in further study.

Earthquake response of isolated cable-stayed bridges under spatially varying ground motions

  • Ates, Sevket;Soyluk, Kurtulus;Dumanoglu, A. Aydin;Bayraktar, Alemdar
    • Structural Engineering and Mechanics
    • /
    • 제31권6호
    • /
    • pp.639-662
    • /
    • 2009
  • A comprehensive investigation of the stochastic response of an isolated cable-stayed bridge subjected to spatially varying earthquake ground motion is performed. In this study, the Jindo Bridge built in South Korea is chosen as a numerical example. The bridge deck is assumed to be continuous from one end to the other end. The vertical movement of the stiffening girder is restrained and freedom of rotational movement on the transverse axis is provided for all piers and abutments. The longitudinal restraint is provided at the mainland pier. The A-frame towers are fixed at the base. To implement the base isolation procedure, the double concave friction pendulum bearings are placed at each of the four support points of the deck. Thus, the deck of the cable-stayed bridge is isolated from the towers using the double concave friction pendulum bearings which are sliding devices that utilize two spherical concave surfaces. The spatially varying earthquake ground motion is characterized by the incoherence and wave-passage effects. Mean of maximum response values obtained from the spatially varying earthquake ground motion case are compared for the isolated and non-isolated bridge models. It is pointed out that the base isolation of the considered cable-stayed bridge model subjected to the spatially varying earthquake ground motion significantly underestimates the deck and the tower responses.

Ambient Vibration measurements and finite element modelling for the Hong Kong Ting Kau Bridge

  • Au, F.T.K.;Tham, L.G.;Lee, P.K.K.;Su, C.;Han, D.J.;Yan, Q.S.;Wong, K.Y.
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.115-134
    • /
    • 2003
  • The Ting Kau Bridge in Hong Kong is a cable-stayed bridge comprising two main spans and two side spans. The bridge deck is supported by three towers, an end pier and an abutment. Each of the three towers consists of a single reinforced concrete mast which reduces its section in steps, and it is strengthened by transverse cables and struts in the transverse vertical plane. The bridge deck is supported by four inclined planes of cables emanating from anchorages at the tower tops. In view of the threat from typhoons, the dynamic behaviour of long-span cable-supported bridges in the region is always an important consideration in their design. This paper is devoted to the ambient vibration measurements of the bridge for evaluation of dynamic characteristics including the natural frequencies and mode shapes. It also describes the modelling of the bridge. A few finite element models are developed and calibrated to match with the field data and the results of subsequent structural health monitoring of the bridge.

탄성지지된 3경간 연속 철근 콘크리트교의 간편한 진동해석 (Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Supports)

  • 김덕현;박제선;김성환;이정호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.349-356
    • /
    • 1998
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports in presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, In this paper. The influence of the modulus of the foundation and $D_{22}$, $D_{l2}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.d.

  • PDF

Reliability analysis of steel cable-stayed bridges including soil-pile interaction

  • Cheng, Jin;Liu, Xiao-luan
    • Steel and Composite Structures
    • /
    • 제13권2호
    • /
    • pp.109-122
    • /
    • 2012
  • An efficient and accurate algorithm is proposed to evaluate the reliability of cable-stayed bridges accounting for soil-pile interaction. The proposed algorithm integrates the finite-element method and the response surface method. The finite-element method is used to model the cable-stayed bridge including soil-pile interaction. The reliability index is evaluated based on the response surface method. Uncertainties in the superstructure, the substructure and load parameters are incorporated in the proposed algorithm. A long span steel cable-stayed bridge with a main span length of 1088 m built in China is considered as an illustrative example. The reliability of the bridge is evaluated for the strength and serviceability performance functions. Results of the study show that when strength limit states for both girder and tower are considered, soil-pile interaction has significant effects on the reliability of steel cable-stayed bridges. Further, a detailed sensitivity study shows that the modulus of subgrade reaction is the most important soil-pile interaction-related parameter influencing the reliability of steel cable-stayed bridges.

Investigation of 3-D dynamic wind loads on lattice towers

  • Zou, Lianghao;Liang, Shuguo;Li, Q.S.;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • 제11권4호
    • /
    • pp.323-340
    • /
    • 2008
  • In this paper, the along-wind, across-wind as well as torsional dynamic wind loads on three kinds of lattice tower models are investigated using the base balance technique in a boundary layer wind tunnel. The models were specially designed, and their fundamental frequencies in the directions of the three principal axes are still in the frequency range of the spectra of wind loads on lattice towers. In order to clear contaminations to the spectra of wind loads induced by model resonance, the generalized force spectra of the first mode of the models in along-wind, across-wind and torsional directions were derived based on measured base moments of the models. The RMS generalized force coefficients are also obtained by removing the contributions of model resonance. Finally, the characteristics of the 3-D dynamic wind loads, especially those of the across-wind dynamic loads, on the three kinds of lattice towers are presented and discussed.

The aerodynamic characteristics of twin column, high rise bridge towers

  • Ricciardelli, Francesco;Vickery, Barry J.
    • Wind and Structures
    • /
    • 제1권3호
    • /
    • pp.225-241
    • /
    • 1998
  • The high-rise supporting towers of long-span suspension and cable-stayed bridges commonly comprise a pair of slender prisms of roughly square cross-section with a center-to-centre spacing of from perhaps 2 to 6 widths and connected by one or more cross-ties. The tower columns may have a constant spacing as common for suspension bridges or the spacing may reduce towards the top of the tower. The present paper is concerned with the aerodynamics of such towers and describes an experimental investigation of the overall aerodynamic forces acting on a pair of square cylinders in two-dimensional flow. Wind tunnel pressure measurements were carried out in smooth flow and with a longitudinal intensity of turbulence 0.10. Different angles of attack were considered between $0^{\circ}$ and $90^{\circ}$, and separations between the two columns from twice to 13 times the side width of the column. The mean values of the overall forces proved to be related to the bias introduced in the flow by the interaction between the two cylinders; the overall rms forces are related to the level of coherence between the shedding-induced forces on the two cylinders and to their phase. Plots showing the variation of the force coefficients and Strouhal number as a function of the separation, together with the force coefficients spectra and lift cross-correlation functions are presented in the paper.