• Title/Summary/Keyword: bridge scour

Search Result 125, Processing Time 0.033 seconds

Analysis of Statistical Characteristics of Pier-Scour Depth Formula Using Hydraulic Experiment Data (수리모형실험 자료를 이용한 교각 세굴심 산정공식의 통계적 특성 분석)

  • Kim, Jong-Sub;Chang, Hyung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.349-356
    • /
    • 2021
  • Since the 1960s, traffic infrastructure, such as bridges, has increased rapidly in Korea as urbanization and industrialization progressed due to economic growth. As the scale of the bridge becomes larger, stability analysis of the superstructure of the bridge is being conducted actively, but scour stability analysis for the substructure of the bridge has not been conducted sufficiently. This study is a basic investigation to prevent large-scale disasters caused by scouring in bridge piers. A simple linear regression model was used to analyze the scour depth calculated through seventeen scour depth calculation formulae, and the scour depth measured through hydraulic model experiments. As a result, the Coleman (1971) formula was the best method among the scour depth calculation formulae, and the Froehlich (1987) formula was the most effective method for calculating the scour depth. In addition, a review using a simple regression model confirmed that the scour depth calculation formulae of CSU (1993), Coleman (1971), and Froehlich (1987) can predict a similar scour depth by reflecting domestic stream characteristics. This study can calculate the scour depth reflecting the environmental conditions of Korea in future stream design.

Erosion Characteristics of Kaolinite with respect to Contents of Silt (실트함량에 따른 카올리나이트의 침식특성 평가)

  • Lee, Ju-Hyung;Park, Jae-Hyun;Chung, Mun-Kyung;Kwak, Ki-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.593-596
    • /
    • 2008
  • The scour phenomenon involves the erosive potential of flowing water and the relative ability of the soil to resist erosion. The scour phenomenon in cohesive soils is much different from that in non-cohesive soils. Granular soils resist erosion by their buoyant weight and the friction between the particles. The soil particles are dislodged individually from the bed under the action of the eroding fluid. Scour in cohesive soils is much slower and more dependent on soil properties than that in non-cohesive soils. Therefore the analysis models for estimating erosion characteristics of cohesive soils should consider not only flowing water but also the relative ability of the soil to resist erosion. In this study, erosion characteristics for the clay-silt mixed soil will be analyzed as a fundamental study for development of bridge scour analysis and design system considering scour resistance capacity of a soil. For this analysis, the relationship between scour characteristics and soil properties was evaluated through scour rate test with Kaolinite samples remolded using various loading and contents of silt.

  • PDF

A Case Study on Local Erosion Characteristics Evaluation of the Inchon Coast (인천 해안지역 지반의 국지적 침식특성 평가)

  • Kwak, Ki-Seok;Lee, Ju-Hyung;Park, Jae-Hyeon;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.455-465
    • /
    • 2006
  • In this study, the effect of scour was evaluated by regional and geotechnical characteristics and back data were accumulate for the design against scour through the local erosion characteristics evaluation of the Inchon coast. The erosion characteristics for the undisturbed soil samples collected near the main locations at the Incheon 2nd bridge, the Hwangyeong bridge, and a coast road in Songdo, are determined quantitatively through the scour rate tests. On the basic soil properties test, the bed around the Inchon coast chiefly consists of fined grained soils, and the soil samples were classified as silty clay(ML) or clay(CL) under the Unified Soil Classification System. On the scour rate test, the critical shear stress increases when the undrained shear strength increases as of the general trend of fine grained soils, and the average scour rate for the maximum velocity by 100 year flood is 173mm/hr at the Incheon 2nd bridge, 67mm/hr at the Hwangyeong bridge and 10mm/hr at a coast road in Songdo, respectively. Comparing to the scour rate of coarse grained soil, that of the bed around the Inchon coast is turned out to be very low. Therefore, the relative ability of the bed around the Inchon coast to resist erosion is assumed to be very high.

  • PDF

Evaluation of Local Erosion Characteristics of Fine-Grained Soils in the West Coast Area (서해안 세립토의 국지적 침식특성 평가)

  • Kwak, Kiseok;Lee, Juhyung;Park, Jae Hyun;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.323-331
    • /
    • 2006
  • It is a recent worldwide trend that erosion characteristics of soil, the resistance factor against scour, are quantified and considered in the estimation of scour depths in fine-grained soils. As part of the efforts, local erosion characteristics on fine-grained soils of the West Coast area are analyzed through scour rate experiments, where a lot of sea-crossing long-span bridges are planned and being constructed in recent years. Four sites including Incheon Bridge, Choji Bridge, Hwankyung Bridge, and Janghang area are finally selected for this study and the scour rate tests are performed using 34 undisturbed soil samples from the sites. The critical shear stresses which represent erodibility of the soil tend to be proportional to the undrained shear strength values. The relative ability of cohesive fine-grained soils to resist erosion is assumed to be higher than that of noncohesive soils. Quantified local erosion characteristics of fine-grained soils in the West Coast area are presented in forms of charts showing relationships between scour rates and shear stresses, and suggested as basic data for the estimation of scour depths and design of bridge foundations in the West Coast area.

Estimation of Scour Depth at Bridnges and Comparative Analysis between Estimated and Measured Scour Depths (교량에서의 세굴깊이 산정 및 산정치와 실측치의 비교분석)

  • Yun, Yong-Nam;Lee, Jae-Su;Ho, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.477-485
    • /
    • 1997
  • Recent internal and external bridge failures due to pier and abutment scour have emphasized the need for better methods of scour depth estimation. This paper compares the hydraulic analysis of the Namhan River Bridge over the Namhan River using one-dimensional models. WSPRO & HEC-2, and the two-dimensional model. TABS-MD based on the procedures presented in HEC-18 published by the U.S. FEdral Highway Administration. A comparison of estimated scour depth for this research based on the results from both one-dimensional and two-dimensional model is presented. At the same time, field measurement has been performed before and after flood using sounding instrument. Fathometer (DE-719C). A comparison between estimated and measured scour depth at bridge is also presented. Result shows that there is all the difference between estimated and measured scour depth due to dissimilarity between laboratory and field conditions. Also, it is difficult to measure the maximum scour depth accurately due to refilling. Therefore development of scour measuring equipment which can be used during peak flood, and derivation of empirical model appropriate for internal river system seems urgent.

  • PDF

Application of Ground Penetrating Radar for Assessing Riverbed Variation Near Bridge Piers (지하투과레이다를 이용한 교각 주변의 하상변화 조사)

  • Park, In-Chan;Cho, Won-Cheol;Lee, Jong-Kook
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.119-128
    • /
    • 2005
  • The assessment of erosional and depositional patterns near bridge piers is essential to understand the fluvial scour process. Geophysical surveys are particularly effective in determining the riverbed variations in a river and may also be of value for obtaining the previous scour history below the riverbed profile. In this study, GPR (Ground Penetrating Radar), as a non-destructive geophysical technique, was used to assess the existence and depth of existing and infilled scour thickness, streambed materials, and pre- and post- scour surfaces at the bridge piers in Han River, June 2002 and October 2002. The GPR acquisition system used for obtaining profiles of the shallow subsurface deposits was a portable GSSI SIR 2000 system with 100 and 400 MHz antennas. The GPR data obtained along the 24 bridge piers in the flow direction of the river and in the surroundings of 5 bridge piers were compared and presented in this study. It is concluded that GPR surveys can be effective in determining both the water depth and sub-bottom geological structure near the bridge piers and abutments provided that the appropriate instrumentation and operational procedures are applied.

Failure Probability of Scoured Pier Foundation under Bi-directional Ground Motions (2방향 지진하중을 받는 세굴된 교각기초의 파괴확률분석)

  • 김상효;마호성;이상우;김영훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.300-307
    • /
    • 2002
  • Bridge foundation failure considering the effect of local scour around pier foundations under hi-directional seismic excitations is examined in probabilistic perspectives. The seismic responses of bridges with deep foundations are evaluated with a simplified mechanical model, which can consider the local scour effect around the deep foundation in addition to many other components. The probabilistic characteristics of local scour depths are estimated by using the Monte Carlo simulation. The probabilistic characteristics of basic random variables used in the Monte Carlo simulation are determined from the actual hydraulic data collected in middle size streams in Korea. The failure condition of deep foundation is assumed as bearing capacity failure of the ground below the foundation base. The probability of foundation failure of a simply supported bridge with various scour conditions and hi-directional seismic excitations are examined. It is found that the local scour and the recovery duration are critical factors in evaluating the probability of foundation failure. Moreover, the probability of foundation failure under hi-directional seismic excitations is much higher than under uni-directional seismic excitations. Therefore, it is reasonable to consider hi-directional seismic excitations in evaluating the seismic safety of bridge systems scoured by a flood.

  • PDF

Integrity Assessment of Spread Footing Pier for Scour Using Natural Frequency (고유진동수를 이용한 확대기초 교각의 세굴 건전성 평가)

  • Park, Byung-Cheol;Oh, Keum-Ho;Park, Seung-Bum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.29-35
    • /
    • 2005
  • In Korea more than ninety bridges are collapsed every year by flood, which causes the scour of pier foundation. Researches on the quantitative assessment method to assess the integrity of bridge against scour have not been organized systematically in the bridge design practice and maintenance area. In this study, dynamic characteristics assessment experiments are carried out as an emergency inspection method to assess the integrity of the pier foundation for scour after a flood. According to the dynamic characteristics assessment experiment, which simulates foundation scour of the spread footing pier, foundation scour can be evaluated by the first mode natural frequency of the pier.

Experimental Estimation of Shear Stresses at Pier-Front (교각전면부 하상재료의 입도분포에 따른 전단응력 산정에 관한 실험적 연구)

  • Park, Yoon Sung;Kang, Jun Ku;Yeo, Woon Kwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.429-433
    • /
    • 2004
  • According to researchers, the influential factors of scouring are generally divided into three factors: the flow conditions, the type and position of structures, and the characteristics of bed materials. In addition, scouring is affected by the 3-dimensional turbulent boundaries, the unsteady flow, the movement of sediment in the scour-hole area, the approach flow velocity and depth, the width of bridge foundation/pier, and the particle size of bed materials. However, it is difficult to estimate the scour depth near bridge piers when all conditions are factored in at once. Therefore, for reasonably accurate estimates of scour depth, it is essential to consider sufficiently the flow force and resisting force for scour. That is, to determine the shear stress concerning the bed material distribution is needed. In this study, the experiments were performed under the condition of a steady state of flow. As a result, scouring occurred at velocity ratios of 0.476,$(V/V_c=0.476)$, and the scour depth was increased linearly as the velocity ratio increased. in addition, the average values of shear stress ratio at zero scouring depth in both rectangular and circular piers were approximately 7$(\tau_c/\tau_{approach})$ and in the case for same size bed particle material. The results of this study can be used for the fundamental material for estimating the scour depth of bed materials.

  • PDF

A Case Study of Pier Scour Considering Soil Erodibility (지반의 침식특성을 이용한 교각세굴 사례 연구)

  • 곽기석;정문경;이주형;박재현
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.67-74
    • /
    • 2004
  • A case study was performed to verify the applicability of existing formulae for predicting bridge scour in cases where its piers are founded in fine-grained soils. The object of study was the Kanghwa Choji Bridge area where the streambed consists of mainly clayey soil. Site investigation included: direct measurement of scour depths around piers using an ultrasonic probe; and collection of undisturbed soil samples which were later used to determine geotechnical properties and scour rate under different stream velocities. Scour depth prediction was made by employing several conventional methods and compared with the measured value. All methods, not taking soil's intrinsic property against erosion into consideration, overestimated scour depth by a factor of 3.6 to 6.5. On the other hand, the SRICOS method yielded a reasonably acceptable overestimation by a factor of 1.7.