• 제목/요약/키워드: bridge monitoring

검색결과 707건 처리시간 0.045초

교량유지관리 자동화를 위한 첨단 로봇 시스템 개발 (Development of Advanced Robot System for Bridge Inspection and Monitoring)

  • 이종세;황인호;김동우;이후석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.90-95
    • /
    • 2007
  • Conventional bridge inspection involves the physical positioning of an inspector by the hydraulic telescoping boom of a "snooper truck" thereby providing visual access to bridge components. The process is time consuming, hazardous, and may be affected by lighting conditions, Therefore, it is of great interest that an automated and/or teleoperated inspection robot be developed to replace the manual inspection procedure. This paper describes the advanced bridge inspection robot system under development and other related activities currently undergoing at the Bridge Inspection Robot Development Interface (BIRDI). BIRDI is a research consortium with its home in the Department of Civil and Environmental System Engineering at Hanyang University at Ansan. Its primary goal is to develop advanced robot systems for bridge inspection and monitoring for immediate field application and commercialization. The research program includes research areas such as advanced inspection robot and motion control system, sensing technologies for monitoring and assessment, and integrated system for bridge maintenance. The center embraces 12 institutions, which consist of 7 universities, 2 research institutes, and 3 private enterprises. Research projects are cross-disciplinary and include experts from structural engineering, mechanical engineering, electronic and control engineering. This research project will contribute to advancement of infrastructure maintenance technology, enhancement of construction industry competitiveness, and promotion of national capacity for technology innovation.

  • PDF

Long-term health monitoring for deteriorated bridge structures based on Copula theory

  • Zhang, Yi;Kim, Chul-Woo;Tee, Kong Fah;Garg, Akhil;Garg, Ankit
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.171-185
    • /
    • 2018
  • Maintenance of deteriorated bridge structures has always been one of the challenging issues in developing countries as it is directly related to daily life of people including trade and economy. An effective maintenance strategy is highly dependent on timely inspections on the bridge health condition. This study is intended to investigate an approach for detecting bridge damage for the long-term health monitoring by use of copula theory. Long-term measured data for the seven-span plate-Gerber bridge is investigated. Autoregressive time series models constructed for the observed accelerations taken from the bridge are utilized for the computation of damage indicator for the bridge. The copula model is used to analyze the statistical changes associated with the modal parameters. The changes in the modal parameters with the time are identified by the copula statistical properties. Applicability of the proposed method is also discussed based on a comparison study among other approaches.

Long term monitoring of a cable stayed bridge using DuraMote

  • Torbol, Marco;Kim, Sehwan;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • 제11권5호
    • /
    • pp.453-476
    • /
    • 2013
  • DuraMote is a remote sensing system developed for the "NIST TIP project: next generation SCADA for prevention and mitigation of water system infrastructure disaster". It is designed for supervisory control and data acquisition (SCADA) of ruptures in water pipes. Micro-electro mechanical (MEMS) accelerometers, which record the vibration of the pipe wall, are used detect the ruptures. However, the performance of Duramote cannot be verified directly on a water distribution system because it lacks an acceptable recordable level of ambient vibration. Instead, a long-span cable-stayed bridge is an ideal test-bed to validate the accuracy, the reliability, and the robustness of DuraMote because the bridge has an acceptable level of ambient vibration. The acceleration data recorded on the bridge were used to identify the modal properties of the structure and to verify the performance of DuraMote. During the test period, the bridge was subjected to heavy rain, wind, and a typhoon but the system demonstrates its robustness and durability.

Bridge Health Monitoring with Consideration of Environmental Effects

  • Kim, Yuhee;Kim, Hyunsoo;Shin, Soobong;Park, Jong-Chil
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.648-660
    • /
    • 2012
  • Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposes a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable-stayed bridge.

유비쿼터스 컴퓨팅 기술을 활용한 콘크리트교량의 계측 모니터링 시스템 적용성 검토에 관한 연구 (The Development of Measuring, Monitoring System for Concrete Bridge Using Ubiquitous Computing Technology)

  • 이승재;황경훈;박성기;성상경
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.586-589
    • /
    • 2006
  • Recently, the application area of wireless LAN(Internet) and CDMA have been increased, rapidly. Bridge monitoring system using this ubiquitous Computing Technology can bring more convenience of bridge maintenance and management. This paper present a automatic data acquisition, control and processing technology through this concept, and check system applicability to the concrete bridge completed. Finally, The preventive bridge monitoring through the application of this system will progress in technology and make civil infrastructure more safe and useful.

  • PDF

A distributed piezo-polymer scour net for bridge scour hole topography monitoring

  • Loh, Kenneth J.;Tom, Caroline;Benassini, Joseph L.;Bombardelli, Fabian A.
    • Structural Monitoring and Maintenance
    • /
    • 제1권2호
    • /
    • pp.183-195
    • /
    • 2014
  • Scour is one of the leading causes of overwater bridge failures worldwide. While monitoring systems have already been implemented or are still being developed, they suffer from limitations such as high costs, inaccuracies, and low reliability, among others. Also, most sensors only measure scour depth at one location and near the pier. Thus, the objective is to design a simple, low cost, scour hole topography monitoring system that could better characterize the entire depth, shape, and size of bridge scour holes. The design is based on burying a robust, waterproofed, piezoelectric sensor strip in the streambed. When scour erodes sediments to expose the sensor, flowing water excites it to cause the generation of time-varying voltage signals. An algorithm then takes the time-domain data and maps it to the frequency-domain for identifying the sensor's resonant frequency, which is used for calculating the exposed sensor length or scour depth. Here, three different sets of tests were conducted to validate this new technique. First, a single sensor was tested in ambient air, and its exposed length was varied. Upon verifying the sensing concept, a waterproofed prototype was buried in soil and tested in a tank filled with water. Sensor performance was characterized as soil was manually eroded away, which simulated various scour depths. The results confirmed that sensor resonant frequencies decreased with increasing scour depths. Finally, a network of 11 sensors was configured to form a distributed monitoring system in the lab. Their exposed lengths were adjusted to simulate scour hole formation and evolution. Results showed promise that the proposed sensing system could be scaled up and used for bridge scour topography monitoring.

Structural health monitoring system for Sutong Cable-stayed Bridge

  • Wang, Hao;Tao, Tianyou;Li, Aiqun;Zhang, Yufeng
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.317-334
    • /
    • 2016
  • Structural Health Monitoring System (SHMS) works as an efficient platform for monitoring the health status and performance deterioration of engineering structures during long-term service periods. The objective of its installation is to provide reasonable suggestions for structural maintenance and management, and therefore ensure the structural safety based on the information extracted from the real-time measured data. In this paper, the SHMS implemented on a world-famous kilometer-level cable-stayed bridge, named as Sutong Cable-stayed Bridge (SCB), is introduced in detail. The composition and core functions of the SHMS on SCB are elaborately presented. The system consists of four main subsystems including sensory subsystem, data acquisition and transmission subsystem, data management and control subsystem and structural health evaluation subsystem. All of the four parts are decomposed to separately describe their own constitutions and connected to illustrate the systematic functions. Accordingly, the main techniques and strategies adopted in the SHMS establishment are presented and some extension researches based on structural health monitoring are discussed. The introduction of the SHMS on SCB is expected to provide references for the establishment of SHMSs on long-span bridges with similar features as well as the implementation of potential researches based on structural health monitoring.

LoRa 센서네트워크 기반의 무선교량유지관리 시스템 구축 (Bridge Monitoring System based on LoRa Sensor Network)

  • 박진오;박상헌;김경수;박원주;김종훈
    • 한국전산구조공학회논문집
    • /
    • 제33권2호
    • /
    • pp.113-119
    • /
    • 2020
  • 사물인터넷 기반의 센서네트워크는 저렴한 비용으로 효율적으로 교량 등의 시설물 유지관리에 적용할 수 있는 한 방안이다. 본 연구에서는 사물인터넷 통신의 하나인, LoRa LPWAN 기반으로 교량 구조건전성모니터링을 위한 시스템을 개발하기 위해서 케이블 장력 모니터링을 위한 센서보드, 기존 계측 센서들과 함께 센서네트워크를 구축하기 위한 DAQ 보드, 데이터들 처리하고 LoRa 통신을 위한 스마트센서노드를 설계 및 제작하였으며 모니터링을 위한 센서네트워크를 구축하였다. 또한 본 시스템의 성능검증을 위해 영광대교에 Test Bed를 구축하여 교량 구조건전성 모니터링을 위한 센서네트워크에 적용가능성 여부를 살펴보았다. Test Bed 검증 결과 LoRa LPWAN 기반 센서네트워크는 데이터 전송률, 정확도, 경제성면에서 교량 구조 건전성 모니터링의 기술 중에 하나로 적용될 수 있으며, 향후 교량구조물 뿐만 아니라 다양한 공공기반 시설물에 유지관리를 위한 시스템으로 보급될 수 있기를 기대한다.

Recent R&D activities on structural health monitoring in Korea

  • Kim, Jeong-Tae;Sim, Sung-Han;Cho, Soojin;Yun, Chung-Bang;Min, Jiyoung
    • Structural Monitoring and Maintenance
    • /
    • 제3권1호
    • /
    • pp.91-114
    • /
    • 2016
  • In this paper, recent research trends and activities on structural health monitoring (SHM) of civil infrastructure in Korea are reviewed. Recently, there has been increasing need for adopting smart sensing technologies to SHM, so this review focuses on smart sensing, monitoring, and assessment for civil infrastructure. Firstly, the research activities on smart sensor technology is reviewed including optical fiber sensors, piezoelectric sensors, wireless smart sensors, and vision-based sensing system. Then, a brief overview is given to the recent advances in smart monitoring and assessment techniques such as vibration-based global monitoring techniques, local monitoring with piezoelectric materials, decentralized monitoring techniques for wireless sensors, wireless power supply and energy harvest. Finally, recent joint SHM activities on several test beds in Korea are discussed to share the up-to-date information and to promote the smart sensors and monitoring technologies for applications to civil infrastructure. It includes a Korea-US joint research on test bridges of the Korea Expressway Corporation (KEC), a Korea-US-Japan joint research on Jindo cable-stayed bridge, and a comparative study for cable tension measurement techniques on Hwamyung cable-stayed bridge, and a campaign test for displacement measurement techniques on Sorok suspension bridge.

Damage identification for high-speed railway truss arch bridge using fuzzy clustering analysis

  • Cao, Bao-Ya;Ding, You-Liang;Zhao, Han-Wei;Song, Yong-Sheng
    • Structural Monitoring and Maintenance
    • /
    • 제3권4호
    • /
    • pp.315-333
    • /
    • 2016
  • This study aims to perform damage identification for Da-Sheng-Guan (DSG) high-speed railway truss arch bridge using fuzzy clustering analysis. Firstly, structural health monitoring (SHM) system is established for the DSG Bridge. Long-term field monitoring strain data in 8 different cases caused by high-speed trains are taken as classification reference for other unknown cases. And finite element model (FEM) of DSG Bridge is established to simulate damage cases of the bridge. Then, effectiveness of one fuzzy clustering analysis method named transitive closure method and FEM results are verified using the monitoring strain data. Three standardization methods at the first step of fuzzy clustering transitive closure method are compared: extreme difference method, maximum method and non-standard method. At last, the fuzzy clustering method is taken to identify damage with different degrees and different locations. The results show that: non-standard method is the best for the data with the same dimension at the first step of fuzzy clustering analysis. Clustering result is the best when 8 carriage and 16 carriage train in the same line are in a category. For DSG Bridge, the damage is identified when the strain mode change caused by damage is more significant than it caused by different carriages. The corresponding critical damage degree called damage threshold varies with damage location and reduces with the increase of damage locations.