• Title/Summary/Keyword: bridge girder

Search Result 1,301, Processing Time 0.031 seconds

A analysis on dyanmic movements of Bridge status using High Rail monitoring systems (상시 계측결과를 이용한 경부고속철도 교량의 동적거동 분석)

  • Chung Jae-Min;Han Sang-Chul;Choi Il-Yoon;Lee Jun-Seok;Seo Hyeong-Lyel
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.934-939
    • /
    • 2004
  • The Korea high-speed rail, based on the French design. It also implements new concept to increase the strength of bridge deck by adding an impact factor (dynamic intensity factor) in static load. In order to assure the dynamic stability, SYSTRA and Jeseph Penzien, a professor in CEC (the US) conducted a dynamic stability review on design phase. Analyzing the review results, they developed design criteria for dynamic behavior. This study deal with operating PSC box GIRDER equipped with measurement equipment or measured data of Seoul $\∼$ Taejeon, P.S.C BOX GIRDER bridge and steel comsition bridge equipped with measurement equipment based on structual knowledge about configuration of measuring sensor, response analysis of structure when train runs was performed by using measured data of PSC box girder to directly compare with design criteria. moreover, the dynamic stability with comparison of high-speed rail construction criteria was reviewed and analyzed based on historical records.

  • PDF

Examination of Value Engineering for Bridge Superstructures using Analytic Hierarchy Process (AHP 기법을 이용한 교량상부구조의 VE 검토)

  • Park, Jang-Ho;Shin, Yung-Seok;Ahn, Ye-Jun;Lee, Kwang-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.79-85
    • /
    • 2009
  • This study presents an algorithm to select the best alternative plane among various bridge superstructure types(Steel box girder, Rational girder, PSC-I girder) using Value Engineering(VE). Economical efficiency, landscape, constructability, maintenance, stability, function of bridge superstructure were taken into consideration in the designing of bridge. Economical efficiency was evaluated for each alternative plan with optimal design considering Life Cycle Cost(LCC). Repair and rehabilitation histories and some factors were set to get reasonable results. In the application of Analytic Hierarchy Process(AHP), consistency of Pairwise Comparisons Matrix was evaluated and the best plan was determined.

Risk Evaluation of Longitudinal Cracking in Concrete Deck of Box Girder Bridge (콘크리트 박스거더 교량 바닥판의 종방향 균열 위험성 정가)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.84-90
    • /
    • 2008
  • The occurrence of longitudinal cracking in concrete deck of box girder bridge is affected by many factors, but the most important factors are the shrinkage and thermal gradient of deck slabs. In this study, therefore, the tensile stresses at the bottom of deck were calculated from the experimental data(autogeneous shrinkage, drying shrinkage, and thermal gradient of deck slab). Also, the possibility of longitudinal cracks at bottom of deck was estimated. For this purpose, full-scale box girder segments have been fabricated and tested. The thermal gradients and shrinkage strains of deck slabs were measured after placement of concrete. Also, analytic program was conducted for the evaluation of longitudinal cracking in bridge deck considering differential shrinkage induced from non-uniform moisture distributions in concrete.

Dynamic Behavior of Simple Span PSC-BOX Girder Bridge under the Passage of the Urban Maglev Transit (도시형자기부상열차 주행하중에 의한 단경간 PSC-Box 거더교의 동적 거동)

  • Yang, Tae-Sock;Chung, Won-Yong;Lee, Gi-Yeol
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.864-869
    • /
    • 2008
  • Magnetic Levitated(Maglev) Vehicle, which utilizes electromagnetic forces between dual-pole electromagnets and a steel rail, generally runs on guideway structures. A prototype of an Urban Maglev Vehicle has been developed and tested in Korea, This study was conducted as a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program, statred in 2006. As the Maglev load is distributed rather than concentrated, a field test was conducted on Simple Span PSC-BOX Girder Bridge(L=25.0m) of the Expo-Maglev test track in Daejeon to examine the dynamic effect of the Maglev load on the bridge. Numerical analyses were also performed up to the maximum passing speed of 110 km/h by 10 km/h increments of Maglev Vehicle using Finite Element model of bridge, and girder deflections, accelerations and Dynamic Amplification Factor (DAF) are analysed.

  • PDF

Span limit and parametric analysis of cable-stayed bridges

  • Zhao, Xinwei;Xiao, Rucheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.271-282
    • /
    • 2019
  • The span record of cable-stayed bridges has exceeded 1,000 m, which makes research on the maximum possible span length of cable-stayed bridges an important topic in the engineering community. In this paper, span limit is discussed from two perspectives: the theoretical span limit determined by the strength-to-density ratio of the cable and girder, and the engineering span limit, which depends not only on the strength-to-density ratio of materials but also on the actual loading conditions. Closed form equations of both theoretical and engineering span limits of cable-stayed bridges determined by the cable and girder are derived and a detailed parametric analysis is conducted to assess the engineering span limit under current technical conditions. The results show that the engineering span limit of cable-stayed bridges is about 2,200 m based on materials used available today. The girder is the critical member restricting further increase in the span length; its compressive stress is the limiting factor. Approaches to increasing the engineering span limit are also presented based on the analysis results.

The Design of Viaduct Girder of Incheon Bridge (인천대교 고가교 상부거더 설계)

  • Kang, Dang-Ok;Cho, Ik-Sun;Kim, Yeong-Seon;Yang, Jang-Ho;Shin, Hyun-Yang;Yoon, Man-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.294-297
    • /
    • 2006
  • The purpose of this study is to introduce design practice for prestressed concrete box girder with AASHTO LRFD Design Specification. Distinctive features of viaduct girder of Incheon Bridge are pre-tensioned transverse tendon, 3-dim. transverse analysis, enlarged opening in diaphragm and so on.

  • PDF

A Study on the Evaluation Methods of the Load-Carrying Capacity of PSC I Type Girder Considering Material Nonlinear (재료 비선형을 고려한 PSC I형 거더교의 내하력평가 기법에 관한 고찰)

  • 심종성;김규선;문도영;주민관
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.187-192
    • /
    • 2003
  • Nowadays, It has adapted both Ultimate Strength Design(USD) and Allowable Stress Design(ASD) Method evaluating load-carrying capacity of PSC I Type Girder Bridge. But it has confused because the each method has brought some different results. This study shows some results of loading test of the PSC I type Girder Bridge and analyzed the structural behavior by FEM analysis considering material nonlinear. Parametric study of effective prestress of post tendon is performed and compared to results of loading test.

  • PDF

A Study on tile Cross Section Optimization of P.C Box-Girder Bridge (P.C 박스거더교의 횡단면 최적설계에 관한 연구)

  • 방명석;김일곤;조현준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.101-104
    • /
    • 1990
  • The program which could determine cross-sectional dimensions of the box girder bridge at tile stage of preliminary design was developed using the optimal technique in this study. It could minimize the cost and time required in the design of box girder bridges and the construction with the prestressed precast segmental method. Objective cost function consisted of four independent variables such as widths and depth of the cross-section. The Nelder-Mead method was used to solve the nonconstrained nonlinear problem like this.

  • PDF

Stress Histogram Analysis of Steel Plate Girder Railway Bridge due to Service Load Histories (실동하중에 의한 강판형철도교의 응력빈도해석)

  • Hwang, In-Gu;Kim, Yeon-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.928-933
    • /
    • 2004
  • Despite the number of steel bridges being under in service more than 50 years reaches about 50$\%$ in present, the quantitative estimation in maintenance on steel railway bridges is not possible because a ton of the field data in the bridges have not been plentifully accumulated. Therefore, a series of field tests on the steel plate girder bridge, the typical types of steel railway bridges, are executed, and the stress characteristics of main members in steel plate girder railway bridges are quantitatively estimated in this study.

  • PDF

Theoretical analysis of simply supported channel girder bridges

  • Hu, Hong-Song;Nie, Jian-Guo;Wang, Yu-Hang
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.241-256
    • /
    • 2015
  • Channel girder bridges that consist of a deck slab and two side beams are good choices for railway bridges and urban rail transit bridges when the vertical clearance beneath the bridge is restricted. In this study, the behavior of simply supported channel girder bridges was theoretical studied based on the theory of elasticity. The accuracy of the theoretical solutions was verified by the finite element analysis. The global bending of the channel girder and the local bending of the deck slab are two contributors to the deformations and stresses of the channel girder. Because of the shear lag effect, the maximum deflection due to the global bending could be amplified by 1.0 to 1.2 times, and the effective width of the deck slab for determining the global bending stresses can be as small as 0.7 of the actual width depending on the width-to-span ratio of the channel girder. The maximum deflection and transversal stress due to the local bending are obtained at the girder ends. For the channel girders with open section side beams, the side beam twist has a negligible effect on the deflections and stresses of the channel girder. Simplified equations were also developed for calculating the maximum deformations and stresses.