• Title/Summary/Keyword: bridge deck analysis

Search Result 399, Processing Time 0.02 seconds

Construction Method and Control System of the Heat of Hydration for Inchon International Airport Elevated Road Way (인천국제공항 여객터미널 전면 고가 교량 공사 시공방법 및 수화열 대책)

  • 임채만;박명웅;조용기;조선규;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.869-881
    • /
    • 1999
  • Inchon International Airport Elevated Road Way is located between the Passenger Terminal Building and Transportaion Center which are Inchon International Airport core construction projects. The deck of the bridge is consists of 5-span or 6-span continuous pre-stressed concrete slab. Steel form has been used to enhance the quality of texture on concrete slab. Steel form has been used to enhance the quality of texture on concrete surface, lower surface of deck slab with the two way arch has been manufactured by highly professional manner in order to get an beautiful exterior architectural looks. The prestressed concrete deck slab is mass concrete structures with a high-specified concrete strength and a varying section in the range of 0.95-2.8m thickness. Therefore high risks of thermal cracking occurrence by heat of hydration highly are expected. To resolve such problem, we adopted type 1 cement and pipe cooking method at construction site through mass concrete specimen test and 3-dimensional analysis. For Pipe cooling we used 25mm diameter stainless pipes with wrinkles. Cooling pipe with spacing 50-60cm has been installed. And continuous pipe cooling with cooling water of 15$^{\circ}C$ was conducted for 2days. In present 8 span of all 29 spans construction has been completed. No thermal cracking heat hydration has been observed yet.

  • PDF

Finite element model updating of Kömürhan highway bridge based on experimental measurements

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Sevim, Baris;Turker, Temel
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.373-388
    • /
    • 2010
  • The updated finite element model of K$\ddot{o}$m$\ddot{u}$rhan Highway Bridge on the Firat River located on the $51^{st}$ km of Elazi$\breve{g}$-Malatya highway is obtained by using analytical and experimental results. The 2D and 3D finite element model of the bridge is created by using SAP2000 structural analyses software, and the dynamic characteristics of the bridge are determined analytically. The experimental measurements are carried out by Operational Modal Analysis Method under traffic induced vibrations and the dynamic characteristics are obtained experimentally. The vibration data are gathered from the both box girder and the deck of the bridge, separately. Due to the expansion joint in the middle of the bridge, special measurement points are selected when experimental test setups constitute. Measurement duration, frequency span and effective mode number are determined by considering similar studies in literature. The Peak Picking method in the frequency domain is used in the modal identification. At the end of the study, analytical and experimental dynamic characteristic are compared with each other and the finite element model of the bridge is updated by changing some uncertain parameters such as material properties and boundary conditions. Maximum differences between the natural frequencies are reduced from 10% to 2%, and a good agreement is found between natural frequencies and mode shapes after model updating.

A Simple and Accurate Analysis of Two Dimensional Concrete Slab for a Railroad Bridge by the Composite Laminates Plate Theory (복합적층판 이론에 의한 2차원 콘크리트 슬래브 철도교량의 정확하고 간단한 해석)

  • Han, Bong-Koo;Bang, Bae-San
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.20-25
    • /
    • 2011
  • In this paper, two dimensional concrete slabs for a railroad bridge were analyzed by the specially orthotropic laminates theory. Both the geometrical and material property of the cross section of the slab was considered symmetrically with respect to the neutral surface so that the bending extension coupling stiffness, $B_{ij}$ = 0, and $D_{16}=D_{26}=0$ Bridge deck behaves as specially orthotropic plates. In general, the analytical solution for such complex systems is very difficult to obtain. Thus, finite difference method was used for analysis of the problem. In this paper, the finite difference method and the beam theory were used for analysis.

Optimum Design of Steel-Deck System for Two-Story Roads (2층도로용 강구조 덱 시스템의 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Kim, Hyun Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.553-564
    • /
    • 1998
  • Recently, more and more steel-deck structural system for two story roads has been adopted as a solution against traffic congestion in urban area, mainly because of fast construction, reduced self-weight, higher stiffness and efficient erection compared to that of concrete decks. The main objective is to study on the unit-elective optimal type and proportioning of a rational steel-deck system for two story roads using an optimum design program specifically developed for steel-deck systems. The objective function for the optimization is formulated as a minimum cost design problem. The behavior and design constraints are formulated based on the ASD(Allowable Stress Design) criteria of the Korean Bridge Design Code. The optimum design program developed in this study consists of two steps - the first step for the optimization of the steel box or plate girder viaducts, and the second step for the optimum design of the steel-decks with closed or open ribs. A grid model is used as a structural analysis model for the optimization of the main girder system, while the analysis of the deck system is based on the Pelican-Esslinger method. The SQP(Sequential Quadratic Programming) is used as the optimization technique for the constrained optimization problem. By using a set of application examples, the rational type related to the optimized steel-deck system designs is investigated by comparing the cost effectiveness of each type. Based on the results of the investigation it may be concluded that the optimal linear box girder and deck system with closed ribs may be utilized as one of the most rational and economical viaducts in the construction of two-story roads.

  • PDF

Shape Optimum Design of Pultruded FRP Bridge Decks (인발성형된 FRP 바닥판의 형상 최적설계)

  • 조효남;최영민;김희성;김형열;이종순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2004
  • Due to their high strength to weight ratios and excellent durability, fiber reinforced polymer(FRP) is widely used in construction industries. In this paper, a shape optimum design of FRP bridge decks haying pultruded cellular cross-section is presented. In the problem formulation, an objective function is selected to minimize the volumes. The cross-sectional dimensions and material properties of the deck of FRP bridges are used as the design variables. On the other hand, deflection limits in the design code, material failure criteria, buckling load, minimum height, and stress are selected as the design constraints to enhance the structural performance of FRP decks. In order to efficiently treat the optimization process, the cross-sectional shape of bridge decks is assumed to be a tube shape. The optimization process utilizes an improved Genetic Algorithms incorporating indexing technique. For the structural analysis using a three-dimensional finite element, a commercial package(ABAQUS) is used. Using a computer program coded for this study, an example problem is solved and the results are presented with sensitivity analysis. The bridge consists of a deck width of 12.14m and is supported by five 40m long steel girders spaced at 2.5m. The bridge is designed to carry a standard DB-24 truck loading according to the Standard Specifications for Highway Bridges in Korea. Based on the optimum design, viable cross-sectional dimensions for FRP decks, suitable for pultrusion process are proposed.

A Study on Repair/ Retrofit for Deteriorations of Steel Bridge -Behavior Characteristics of Welded Joint Part of Flange and Repair/Retrofit of Fatigue Crack in Railway Steel Bridge- (강철도교 열화현상에 관한 보수/보강 연구 -강철도교의 플랜지 용접이음부의 거동 특성 및 피로균열 보수보강-)

  • Kyung, Kab Soo;Lee, Sung Jin;Park, Jin Eun;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.613-625
    • /
    • 2012
  • Since railway bridge frequently have a chance of passing train load close to design load, it is necessary to reflect sufficiently fatigue property in early design phase for many structural details. Nevertheless fatigue cracks are reported partly in deck plate girder of railway steel bridge because of the weight and arrangement of axial load acting on railway bridge, the application of improper structural details for fatigue problem etc.. One of main cause for fatigue crack at the welded part of upper flange and web is caused by the eccentricity action of train load due to the difference of center to center spacing between the main girder supporting sleeper and the rail acting train load. For the existing deck plate girder of railway steel bridge, in this study, field survey, field measurement and a series of structural analysis were performed. In addition, the characteristics of structural behavior, the causes and repair/ retrofit of fatigue crack were examined in the target bridge.

Local Deformation Analysis of the Orthotropic Steel Bridge Deck Due to Wheel Loadings Using FSM and FEM (윤하중에 의한 강바닥판 교면포장의 종방향균열 관련 수치해석법 개발)

  • Jeong, Jin Seok;Jung, Myung Rag;Ock, Chang Kwon;Lee, Won Tae;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.243-251
    • /
    • 2016
  • Longitudinally structural cracks are sometimes observed in the pavement on steel plate deck bridges because traffic truck loadings can cause large local deformations of the thin deck plate stiffened by longitudinal and transverse beams. In this study, an improved finite strip method using flat-shell strip, prism, and link elements is presented to investigate local deformations of steel decks with pavements in which flexural and torsional stiffness effects of thin floor beams are rigorously taken into account. A simplified deck model extracted from steel plate-girder bridges is analyzed using the developed FSM and the commercial FE program, ABAQUS and also, their numerical results are compared and discussed.

Running Safety and Ride Comfort Prediction for a Highspeed Railway Bridge Using Deep Learning (딥러닝 기반 고속철도교량의 주행안전성 및 승차감 예측)

  • Minsu, Kim;Sanghyun, Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.375-380
    • /
    • 2022
  • High-speed railway bridges carry a risk of dynamic response amplification due to resonance caused by train loads, and running safety and riding comfort must therefore be reviewed through dynamic analysis in accordance with design codes. The running safety and ride comfort calculation procedure, however, is time consuming and expensive because dynamic analyses must be performed for every 10 km/h interval up to 110% of the design speed, including the critical speed for each train type. In this paper, a deep-learning-based prediction system that can predict the running safety and ride comfort in advance is proposed. The system does not use dynamic analysis but employs a deep learning algorithm. The proposed system is based on a neural network trained on the dynamic analysis results of each train and speed of the railway bridge and can predict the running safety and ride comfort according to input parameters such as train speed and bridge characteristics. To confirm the performance of the proposed system, running safety and riding comfort are predicted for a single span, straight simple beam bridge. Our results confirm that the deck vertical displacement and deck vertical acceleration for calculating running safety and riding comfort can be predicted with high accuracy.

A Experimental Comparison Study on Structural Behavior of Prefabricated Bridge (조립식 바닥판 교량의 거동에 대한 실험적 비교 연구)

  • Han, Man-Yup;Kim, Seong-Dong;Jin, Kyung-Seok;Kang, Sang-Hun;Cho, Byung-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.25-28
    • /
    • 2008
  • Currently, the prefabricated bridge having the effects to reduce the term of works and the cost of construction is often studied and countries such as America have already developed members, the parts of it, and the technique of construction. In addition, they have supplied them to the fields. The study of prefabricated method of steel composite bridge, which has the precast deck - plate and main girder fixed by high tension bolt and can resist horizontal sheer, is being progressed. However, it is difficult to understand the characteristics of the prefabricated bridge's behavior when the superstructure of the prefabricated method is analyzed by applying to the analysis model of existing bridges. Therefore, this study has the purpose of understanding real structural behavior of prefabricated bridge through comparison and analysis between the structural analysis model reflecting the characteristics of the real prefabricated bridge's superstructure and real size experiment.

  • PDF

An Evaluation of Epoxy Asphalt Mixtures for Long-Span Steel Bridge Deck (장경간 강바닥판 교량용 에폭시 아스팔트 혼합물의 적용성 평가)

  • Baek, Yu Jin;Park, Chang Woo;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.579-586
    • /
    • 2012
  • The main objective of the research is to evaluate the laboratory performances of epoxy asphalt mixtures for long-span steel bridge decks. The aggregate gradations were recommended for field applications. The laboratory performance test results showed that the durability of epoxy asphalt mixtures was more noticeable than that of conventional ones. The structural analysis was conducted using resilient modulus and bond-shear test results. The analysis results revealed that just 9% out of total bond-shear stress was enough for the entire required bond-shear stress in the pavement system. The tensile stresses in the bridge decks were within limits compared to the laboratory test results from the Nanjing Grand Bridge in China. As a result, the laboratory performances of the epoxy asphalt mixtures for long-span steel bridge decks were better than those of conventional asphalt mixtures. However, the laboratory performance tests of epoxy asphalt mixtures for long-span steel bridge decks should be conducted precisely since the strengths of the mixtures are sensitive to the temperatures and curing times.