• Title/Summary/Keyword: bridge damage

Search Result 764, Processing Time 0.027 seconds

Residual seismic performance of steel bridges under earthquake sequence

  • Tang, Zhanzhan;Xie, Xu;Wang, Tong
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.649-664
    • /
    • 2016
  • A seismic damaged bridge may be hit again by a strong aftershock or another earthquake in a short interval before the repair work has been done. However, discussions about the impact of the unrepaired damages on the residual earthquake resistance of a steel bridge are very scarce at present. In this paper, nonlinear time-history analysis of a steel arch bridge was performed using multi-scale hybrid model. Two strong historical records of main shock-aftershock sequences were taken as the input ground motions during the dynamic analysis. The strain response, local deformation and the accumulation of plasticity of the bridge with and without unrepaired seismic damage were compared. Moreover, the effect of earthquake sequence on crack initiation caused by low-cycle fatigue of the steel bridge was investigated. The results show that seismic damage has little impact on the overall structural displacement response during the aftershock. The residual local deformation, strain response and the cumulative equivalent plastic strain are affected to some extent by the unrepaired damage. Low-cycle fatigue of the steel arch bridge is not induced by the earthquake sequences. Damage indexes of low-cycle fatigue predicted based on different theories are not exactly the same.

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

Optimal sensor placement for bridge damage detection using deflection influence line

  • Liu, Chengyin;Teng, Jun;Peng, Zhen
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.169-181
    • /
    • 2020
  • Sensor placement is a crucial aspect of bridge health monitoring (BHM) dedicated to accurately estimate and locate structural damages. In addressing this goal, a sensor placement framework based on the deflection influence line (DIL) analysis is here proposed, for the optimal design of damage detection-oriented BHM system. In order to improve damage detection accuracy, we explore the change of global stiffness matrix, damage coefficient matrix and DIL vector caused by structural damage, and thus develop a novel sensor placement framework based on the Fisher information matrix. Our approach seeks to determine the contribution of each sensing node to damage detection, and adopts a distance correction coefficient to eliminate the information redundancy among sensors. The proposed damage detection-oriented optimal sensor placement (OSP) method is verified by two examples: (1) a numerically simulated three-span continuous beam, and (2) the Pinghu bridge which has existing real damage conditions. These two examples verify the performance of the distance corrected damage sensitivity of influence line (DSIL) method in significantly higher contribution to damage detection and lower information redundancy, and demonstrate the proposed OSP framework can be potentially employed in BHM practices.

Pre-fatigue Damage of the Strengthened Bridge Deck for Study on Fatigue Behavior (피로거동파악을 위한 성능향상된 교량상판의 사전피로손상의 고찰)

  • 심종성;오홍섭;김진하
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.697-700
    • /
    • 2000
  • Fatigue damage to reinforced concrete bridge decks have been found in many bridges. Failure mode of most reinforced concrete decks is caused by local punching shear rather than flexural moment due to cumulated damage. In this study, mechanical degradation of unstrengthened and strengthened bridge deck specimens is experimentally investigated. The unstrengthened deck specimens were damaged under the pulsating loading condition. After the test, deteriorated deck specimens were strengthened with Carbon Fiber Sheet, then loaded to observe the improvement of the fatigue behavior. It is shown that fatigue damaged specimens are similar to real bridge rather than static damaged specimens.

  • PDF

Analysis of the Degree of Fatigue Damage in Truss Railway Bridge by Actual Stress and Simulation (실측응력 및 시뮬레이션에 의한 트러스 철도교의 피로피해도 분석)

  • Jung, Young-Hwa;Kim, Ik-Gyeom;Kim, Ji-Hun;Kim, eun-sung
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.149-158
    • /
    • 2000
  • After measuring actual stress by two measurements(Dynamic Strain Meter, Histogram Recorder) on truss rail road bridge, we could perform time history analysis by 3-D beam element method on modelling bridge. And then, after analyzing bridge structure in static by 3-D modelling, we estimated degree of fatigue damage in main member, secondary member of tie zone, cutting area of base metal cross section for confirming the result. In case that the simulated stress is carried out on modeling bridge, most of those simulation mainly is performed by main members. But in real bridge fatigue damage problems generally caused by junctions, connections, joints in which especially local stress is activated. Therefore, in this paper actual stress on critical area was estimated through the analysis result by simulation. With this study, we can estimate the degree of fatigue damage from a safety point of view and comparative accuracy.

  • PDF

Damage Detection in Bridges Using Modal Flexibility Matrices Under Temperature Variation (상시 온도변화 효과를 고려한 모드 유연도행렬 기반의 교량의 손상탐색기법)

  • Koo, Ki-Young;Lee, Jong-Jae;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.651-656
    • /
    • 2007
  • Changes in measured structural responses induced by a damage could be significantly smaller than those by environmental effects such as temperature and temperature gradients. It is highly desirable to develop a methodology to distinguish the changes due to the structural damage from those by the environmental variations. In this study, a novel method to extract the damage-induced deflection under temperature variations is presented using the outlier analysis on the deflections obtained using the modal flexibility matrices. The main idea is that temperature change in a bridge would produce global increase or decrease in deflections over the whole bridge while structural damages may cause local variations in deflections near the damage locations. Hence, the correlation between the deflection measurements may show high abnormality near the damage locations. A series of laboratory tests were carried out on a bridge model with a steel box-girder for 14 days. It has been found that the damage existence assessment and localization can carried out for a case with relatively small damage under the temperature variations

  • PDF

A statistical reference-free damage identification for real-time monitoring of truss bridges using wavelet-based log likelihood ratios

  • Lee, Soon Gie;Yun, Gun Jin
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.181-207
    • /
    • 2013
  • In this paper, a statistical reference-free real-time damage detection methodology is proposed for detecting joint and member damage of truss bridge structures. For the statistical damage sensitive index (DSI), wavelet packet decomposition (WPD) in conjunction with the log likelihood ratio was suggested. A sensitivity test for selecting a wavelet packet that is most sensitive to damage level was conducted and determination of the level of decomposition was also described. Advantages of the proposed method for applications to real-time health monitoring systems were demonstrated by using the log likelihood ratios instead of likelihood ratios. A laboratory truss bridge structure instrumented with accelerometers and a shaker was used for experimental verification tests of the proposed methodology. The statistical reference-free real-time damage detection algorithm was successfully implemented and verified by detecting three damage types frequently observed in truss bridge structures - such as loss of bolts, loosening of bolts at multiple locations, sectional loss of members - without reference signals from pristine structure. The DSI based on WPD and the log likelihood ratio showed consistent and reliable results under different damage scenarios.

Evaluation of Ductility and Damage Ratio for Reinforced Concrete Bridge Piers (철근콘크리트 교각의 연성과 손상도 평가)

  • Park, Chang-Gyu;Lee, Dae-Hyoung;Lee, Eun-Hee;Kim, Hoon;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.197-204
    • /
    • 2002
  • The resent earthquakes in worldwide have caused extensive damage to highway reinforced concrete bridge piers. It has been observed in the Korean Peninsula that the number of minor or low earthquake motions have increased year by year. Since the concern about the earthquake hazards is increased, the objective of this research is to evaluate the damage of reinforced concrete bridge piers subjected to probable earthquake motions. Experimental investigation was conducted to study the seismic performance of the full-scale specimens in size D=1.2m H=4.8m, which were constructed with different longitudinal lap splice and loading pattern, through the quasi-static test and the pseudo-dynamic test. It is thought that this result could contribute to establish the retrofit decision-making and disaster planning of reinforced concrete bridge piers in earthquake regions. And it could be also possible to quantify the damage of reinforced concrete bridge piers under cyclic loading

  • PDF

Health monitoring of a bridge system using strong motion data

  • Mosalam, K.M.;Arici, Y.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.427-442
    • /
    • 2009
  • In this paper, the acceptability of system identification results for health monitoring of instrumented bridges is addressed. This is conducted by comparing the confidence intervals of identified modal parameters for a bridge in California, namely Truckee I80/Truckee river bridge, with the change of these parameters caused by several damage scenarios. A challenge to the accuracy of the identified modal parameters involves consequences regarding the damage detection and health monitoring, as some of the identified modal information is essentially not useable for acquiring a reliable damage diagnosis of the bridge system. Use of strong motion data has limitations that should not be ignored. The results and conclusions underline these limitations while presenting the opportunities offered by system identification using strong motion data for better understanding and monitoring the health of bridge systems.

Seismic Damage Index Proposal and Damage Assessment for Cable-Stayed Bridge (사장교의 내진 손상지수의 제안 및 손상도 평가)

  • Kim, Eung-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.127-135
    • /
    • 2018
  • With the nation showing increasing concern for earthquakes, there have been several methods for the analysis of earthquakes and evaluation of damage. Nevertheless, there is no clear standard to assess the seismic damage to structures quantitatively. Accordingly, this study conducted seismic analysis of several forms of seismic waves and actual seismic load, targeting the cable stayed bridge, which is supported by a cable and proposes a method for evaluating the damage based on the results. The damage index was calculated based on the tilting of the pylon of the cable-stayed bridge and the characteristics of physical seismic damage was suggested with 4 levels, such as A, B, C, and D. In addition, it is not proper to simply judge that the seismic damage index is obtained as large or small at all times depending on the seismic analysis method. Although this study focused on the proposal seismic damage index and an evaluation of the damage targeting the cable stayed bridge, the result was applied to a structure with a similar maximum displacement response.