• Title/Summary/Keyword: bridge damage

Search Result 769, Processing Time 0.033 seconds

Ductility Assesment of Damaged RC Bridge Piers w with Lap-Spliced Bars

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.453-456
    • /
    • 2003
  • This research is to evaluate the seismic performance of reinforced concrete bridge piers with lap-spliced longitudinal reinforcement steels in the plastic hinge region, and to develop the enhancement scheme of their seismic capacity. Six circular columns of 0.6m diameter and 1.5m height were made with two confinement steel ratios. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under an axial load, P=$0.1f_{ck}A_{g}$, and residual seismic performance of damaged columns was evaluated. Test results show that RC bridge piers with lap-spliced longitudinal steels behaved with minor damage even under artificial earthquakes with 0.22g PGA, but failed at low ductility subjected to the subsequent quasi-static load test. This failure was due to the debonding of the lap splice. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region showed significant improvement both in flexural strength and displacement ductility.

  • PDF

An Experimental Structural Performance of Steel Concrete Hybrid Deck for Bridge (교량용 강ㆍ콘크리트 합성 바닥판의 실험적 구조성능)

  • 정연주;정광회;구현본;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.524-529
    • /
    • 2003
  • This paper presents a experimental structural performance of steel-concrete hybrid bridge deck, which has studs to connect steel plate and concrete and T beam to improve structural performance, by steel plate shape, studs and load location. It proved that steel-concrete hybrid deck has a high structural performance and lightweight due to the efficient use of steel plate as a structural member, which has only used as formwork. In failure mode, few specimen failed at punching shear and many specimen at concrete crushing, therefore proved it has sufficient stability to punching shear which is the most frequent damage of bridge deck. Steel-concrete hybrid deck of plane steel plate has a high structural performance, and that of corrugated steel plate has a high reduction of weight.

  • PDF

Arthroscopic Footprint Reconstruction of Bursal-side Delaminated Rotator Cuff Tears using the Suture-bridge Technique

  • Kim, Kyung-Cheon;Rhee, Kwang-Jin;Shin, Hyun-Dae;Byun, Ki-Yong;Yang, Jae-Hoon;Kim, Dong-Kyu;Kim, Pil-Sung
    • The Academic Congress of Korean Shoulder and Elbow Society
    • /
    • 2009.03a
    • /
    • pp.210-210
    • /
    • 2009
  • For a bursal-side retracted laminated rotator cuff tear, simple repair of the retracted bursal-side rotator cuff might be insufficient because the repaired tendon could remain as an intratendinous tear of the rotator cuff. We present a repair method for intratendinous rotator cuff tears using the suture-bridge technique. We believe that this method helps to preserve the remnant rotator cuff tendon without tissue damage and restores the normal rotator cuff footprint in bursal-side delaminated rotator cuff tears.

  • PDF

Fatigue Behavior of GFRP Bridge Deck in the Transverse Direction (GFRP 바닥판의 약축방향 피로거동 특성)

  • Zi, Goang-Sseup;Jung, Jin-Kyu;Kim, Byung-Min;Hwang, Yoon-Koog;Lee, Young-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.393-398
    • /
    • 2007
  • Fatigue Behavior of a GFRP bridge deck consisting of rectangular unit modules is studied by an experimental method. The experiment focuses on how the damage in the transverse direction influence the overall behavior of the deck It is proposed filling the space in each module with a soft foam. Using the recent experimental data, the fatigue behavior is discussed. If the space of the deck is filled with the foam, the fatigue life of the deck was increased about 1,000 times for the same level of the stress variation as the reference deck not filled.

  • PDF

Time-dependent effects on dynamic properties of cable-stayed bridges

  • Au, Francis T.K.;Si, X.T.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.139-155
    • /
    • 2012
  • Structural health monitoring systems are often installed on bridges to provide assessments of the need for structural maintenance and repair. Damage or deterioration may be detected by observation of changes in bridge characteristics evaluated from measured structural responses. However, construction materials such as concrete and steel cables exhibit certain time-dependent behaviour, which also results in changes in structural characteristics. If these are not accounted for properly, false alarms may arise. This paper proposes a systematic and efficient method to study the time-dependent effects on the dynamic properties of cable-stayed bridges. After establishing the finite element model of a cable-stayed bridge taking into account geometric nonlinearities and time-dependent behaviour, long-term time-dependent analysis is carried out by time integration. Then the dynamic properties of the bridge after a certain period can be obtained. The effects of time-dependent behaviour of construction materials on the dynamic properties of typical cable-stayed bridges are investigated in detail.

Dynamic Behaviors of the Simply Supported Bridge System under Seismic Excitations Considering Pounding Effects (충돌을 고려한 지진하중을 받는 교량의 거동특성분석)

  • 김상효
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.231-238
    • /
    • 1999
  • The longitudinal dynamic behaviors of the bridge system consisting of multiple simply supported spans under seismic excitations are examined considering pounding effects. The pounding phenomena between adjacent girders which may consequently result in the span collapses are modeled by using the multi-degree-of-freedom system, The inelastic behavior of the RC pier is also considered by adopting the hysteresis loop model and the p-$\delta$ effect. Motions of the foundation and abutment are also considered but the local damage resulting from the girder pounding assumed to be neligible. The developed model is found to give the appropriate information of the dynamic characteristics of the bridge behavior. It is observed that the pounding effect becomes significant as the peak acceleration of the seismic excitation increases. Under minor earthquakes the pounding tends to increase the relative displacements while under strong earthquakes it tends to decrease the relative displacements by restricting the longitudinal girder motions, therefore it is suggested that the pounding effects should be considered in the analysis of the relative displacements of the longitudinally adjacent girder motions.

  • PDF

Approach zone of parametric analysis for hardness mitigation of connection (접속부의 강성완화를 위한 Approach zone의 매개분석)

  • Son, Ji-Hyun;Choi, Jin-You;Oh, Ji-Taek;Hwang, Won-Sup
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.558-564
    • /
    • 2006
  • When vehicles pass the connection between the bridge and earthwork, the difference of both sections' stiffness produces an increasing wheelload. As a consequence, it results in the excessive vibration of vehicles and the damage of bearing system. In general, steel plate girder railway bridges without ballast track have larger stiffness than the bridge with ballast, and produces larger impulse on the bridge superstructure. Thus, it is necessary to reduce the differences of both stiffness. This study presents parametric studies on the behavior of plate girder bridges and their tracks by means of various stiffnesses and the length of approach zone. The results of numerical study showed that the smaller the stiffness of both sides and the longer the length of approach zone, the variation of wheelload becomes smaller. Hence, it gives less burden into the plate girder bridges and their tracks. It is expected that the results of parametric study can be used as a preliminary data for the determination of economical length on the approach zone and the stiffness of both sides.

  • PDF

Effect of soil flexibility on bridges subjected to spatially varying excitations

  • Li, Bo;Chouw, Nawawi
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.213-232
    • /
    • 2014
  • Pounding is a major cause of bridge damage during earthquakes. In an extreme situation, it can even contribute to the unseating of bridge girders. Long-span bridges will inevitably experience spatially varying ground motions. Soil-structure interaction (SSI) may play a significant role in the structural response of these structures. The objective of this research is to experimentally investigate the effect of spatially varying ground motions on the response of a three-segment bridge considering SSI and pounding. To incorporate SSI, the model was placed on sand contained in sandboxes. The sandboxes were fabricated using soft rubber in order to minimise the rigid wall effect. The spatially varying ground motion inputs were simulated based on the New Zealand design spectra for soft soil, shallow soil and strong rock conditions, using an empirical coherency loss function. The results show that with pounding, SSI can amplify the pier bending moments and the relative opening displacements.

Long term health monitoring of post-tensioning box girder bridges

  • Wang, Ming L.
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.711-726
    • /
    • 2008
  • A number of efforts had been sought to instrument bridges for the purpose of structural monitoring and assessment. The outcome of these efforts, as gauged by advances in the understanding of the definition of structural damage and their role in sensor selection as well as in the design of cost and data-effective monitoring systems, has itself been difficult to assess. The authors' experience with the design, calibration, and operation of a monitoring system for the Kishwaukee Bridge in Illinois has provided several lessons that bear upon these concerns. The systems have performed well in providing a continuous, low-cost monitoring platform for bridge engineers with immediate relevant information.

Empirical Fragility Curves for Bridge (교량의 경험적 손상도 곡선)

  • Lee, Jong-Heon;Kim, Woon-Hak;Choi, Jung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.255-262
    • /
    • 2002
  • This paper presents a statistical analysis of empirical fragility curves for bridge. The empirical fragility curves are developed utilizing bridge damage data obtained from the 1995 Hyogoken Nanbu(Kobe) earthquake. Two-parameter lognormal distribution functions are used to represent the fragility curves with the parameters estimated by the maximum likelihood method. This paper also presents methods of testing the goodness of fit of the fragility curves and estimating the confidence intervals of the two parameters(median and log-standard deviation) of the distribution. An analytical interpretation of randomness and uncertainty associated with the median is provided.