• 제목/요약/키워드: bridge cross section

검색결과 209건 처리시간 0.026초

Shear lag effects on wide U-section pre-stressed concrete light rail bridges

  • Boules, Philopateer F.;Mehanny, Sameh S.F.;Bakhoum, Mourad M.
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.67-80
    • /
    • 2018
  • Recently, U-section decks have been more and more used in metro and light rail bridges as an innovative concept in bridge deck design and a successful alternative to conventional box girders because of their potential advantages. U-section may be viewed as a single vent box girder eliminating the top slab connecting the webs, with the moving vehicles travelling on the lower deck. U-section bridges thus solve many problems like limited vertical clearance underneath the bridge lowest point, besides providing built-in noise barriers. Beam theory in mechanics assumes that plane section remains plane after bending, but it was found that shearing forces produce shear deformations and the plane section does not remain plane. This phenomenon leads to distortion of the cross section. For a box or a U section, this distortion makes the central part of the slab lagging behind those parts closer to the webs and this is known as shear lag effect. A sample real-world double-track U-section metro bridge is modelled in this paper using a commercial finite element analysis program and is analysed under various loading conditions and for different geometric variations. The three-dimensional finite element analysis is used to demonstrate variations in the transverse bending moments in the deck as well as variations in the longitudinal normal stresses induced in the cross section along the U-girder's span thus capturing warping and shear lag effects which are then compared to the stresses calculated using conventional beam theory. This comparison is performed not only to locate the distortion, warping and shear lag effects typically induced in U-section bridges but also to assess the main parameters influencing them the most.

고속전철 PSC 박스거더 교량의 합성거동에 관한 연구 (A Study on the Behavior of Composite PSC Box Girder High-speed Railway Bridges)

  • 김영진;김병석;강재윤
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.54-60
    • /
    • 1998
  • PSC box bridges by MSS construction method in high-speed railway may not be cast in place at one step. Web and bottom flange(U member) in the cross section are cast in place at first, then top flange will be cast in place later with some time lag. In this section, stress distributions of U member and top flange are different with those in generally complete cast in place cross section. In the composite section composed of two different aged members, the redistribution of stresses takes place. This results from time-dependent strain characteristics of concrete and the effects of forces applied at the various stages. For comparison in the present paper, two models, one with the composite cross section and the other with generally complete cast in place cross section, are analyzed. The longitudinal stress differences of two models on considering construction stages are compared. As the analysis results show the considerable differences in the stresses of cross section between two models, the composition of cross section is considered for rational design of PSC box girder bridge.

  • PDF

단순강판형 단면의 최적설계를 위한 효율적인 비선형계획기법 (Efficient NLP Techniques for the Optimum Design of Simple Steel Plate Girder Cross Section)

  • 김종옥
    • 한국농공학회지
    • /
    • 제36권2호
    • /
    • pp.111-122
    • /
    • 1994
  • In this study, an algorithm which can be applied to the optimum design of simple steel plate girders was developed, and efficient optimization strategies for the solution of algorithm were found out. The optimum design algorithm consists of 3-levels of optimization. In the first and second levels of optimization, the absolute maximum bending moment and shearing force are extracted and in the third level of optimization, the optimum cross section of steel plate girder is determined. For the optimum design of cross section, the objective function is formulated as the total area of cross section and constraints are derived in consideration of the various stresses and the minimum dimension of flange and web based on the part of steel bridge in the Korea standard code of road bridge. Sequential unconstrained minimization technique using the exterior penalty function method(SUMT-EP), sequential linear programming(SLP) and sequential quadratic programming (SQP) are proved to be efficient and robust strategies for the optimum design of simple plate girder cross section. From the reliable point of view, SLP is the most efficient and robust strategy and SQP is the most efficient one from the viewpoint of converguency and computing time.

  • PDF

CFD practical application in conceptual design of a 425 m cable-stayed bridge

  • Nieto, F.;Hernandez, S.;Jurado, J.A.;Baldomir, A.
    • Wind and Structures
    • /
    • 제13권4호
    • /
    • pp.309-326
    • /
    • 2010
  • CFD techniques try to find their way in the bridge engineering realm nowadays. However, there are certain fields where they offer superior performance such as conceptual bridge design and bidding design. The CFD studies carried out for the conceptual design of a 425 m length cable-stayed bridge are presented. A CFD commercial package has been employed to obtain for a set of cross-sections the aerodynamic coefficients considering 2D steady state. Additionally, for those cross-sections which showed adequate force coefficients, unsteady 2D simulations were carried out to detect the risk of vortex shedding. Based upon these computations the effect on the aerodynamic behavior of the deck cross-section caused by a number of modifications has been evaluated. As a consequence, a new more feasible cross-section design has been proposed. Nevertheless, if the design process proceeds to a more detailed step a comprehensive set of studies, comprising extensive wind tunnel tests, are required to better find out the aerodynamic bridge behavior.

고속전철 PSC 박스거더교 합성거동의 현장 계측에 관한 연구 (Field Investigation of Composite Behavior in High-speed Railway PSC Box Girder Bridge)

  • 김영진;김병석;강재윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.995-1000
    • /
    • 2000
  • Segmentally erected prestressed concrete box girder bridges have been widely used in Korean high speed railway. Segmental erection has been accomplished along the longitudinal direction and across the depth of cross section. The cross section is similar to a composite cross section, composed of old and new segments. Because these segments have different time-dependent creep and shrinkage properties, a stress redistribution takes place during the construction period. It is the main objective in this research to investigate this behavior. An actual bridge was instrumented with 96 vibrating wire embedded type strain gauges, 6 electronic type steel strain gauges, and 75 thermocouples. Two span continuous high speed railway bridge was selected. Two points of importance, such as the midpoint of the first span and the point of interior support, along the span of the girder were chosen to monitor the time dependent behaviors for an extended period of time. The data collection was starting just after concrete girder were cast and is still going on. According to the measured results, the strain distributions across the depth of the section at midspan and interior support were not continuous and the important redistribution of stresses takes place. Thus, rational design of prestressed concrete composite box girder bridges need.

도로교 설계기준을 적용한 초간편 H-형강 강합성 교량 설계단면 연구 (A Study on Design Section of Composite Steel H-Beam Bridge Based on KRTA Design Specifications)

  • 박종섭;김재흥
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1711-1717
    • /
    • 2008
  • 본 논문에서는 신형식 강합성 H형강 교량의 최적 설계단면 결정 및 거동 특성을 분석하고 있다. 단경간 교량과 등간격 2 3경간 연속교량에 대한 설계단면을 도로교 설계기준(2005)을 토대로 최적의 H-형강거더 선정과정을 상세히 기술하고 있으며, 설계단면결정을 위한 구조해석시 범용구조해석프로그램 MIDAS(2006)를 사용하여 발생되는 내력과 응력을 계산하였다. 설계단면의 안전성을 검토하고자 ABAQUS(2007)를 사용하여 설계단면의 발생응력과 처짐을 설계기준의 허용값들과 비교 검토하였다. 검토결과 제안된 설계단면은 안전측으로 제안되고 있음을 확인할 수 있었다.

복합소재 교량용 방호울타리의 최적 적층 단면 도출을 위한 낙하 충돌시험 (The Fall Impact test for Extraction of Optimal Stacking Section of Composite Safety Barrier for Bridge)

  • 홍갑의;전신열;김기승;김승억
    • 복합신소재구조학회 논문집
    • /
    • 제2권1호
    • /
    • pp.1-7
    • /
    • 2011
  • 본 논문에서는 복합소재 방호울타리의 6가지 적층 단면에 대한 충돌시뮬레이션을 실시하여 최적 적층 단면을 결정하였다. 먼저 6가지 단면 형상에 대하여 설문 조사를 통하여 형상을 결정하였다. 결정된 보 단면에 대하여 6가지 적층설계를 하였다. 적층에는 CSM, DB, DBT, Roving 섬유를 사용하였다. LS-DYNA를 사용하여 수평 및 3:1 경사에 대한 복합소재 보를 모델링하였다. 직육면체 추 및 원통형 추를 사용하여 낙하 충돌 시뮬레이션을 실시하였다. 시뮬레이션결과를 비교 분석하여 최적 적층 단면을 도출하였다.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • 제27권6호
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

Experimental and numerical study on generation and mitigation of vortex-induced vibration of open-cross-section composite beam

  • Zhou, Zhiyong;Zhan, Qingliang;Ge, Yaojun
    • Wind and Structures
    • /
    • 제23권1호
    • /
    • pp.45-57
    • /
    • 2016
  • Open-cross-section composite beam (OCB) tends to suffer vortex-induced vibration (VIV) due to its bluff aerodynamic shape. A cable-stayed bridge equipped with typical OCB is taken as an example in this paper to conduct sectional model wind tunnel test. Vortex-induced vibration is observed and maximum vibration amplitudes are obtained. CFD approach is employed to calculate the flow field around original cross sections in service stage and construction stage, as well as sections added with three different countermeasures: splitters, slabs and wind fairings. Results show that flow separate on the upstream edge and cause vortex shedding on original section. Splitters can only smooth the flow field on the upper surface, while slabs cannot smooth flow field on the upper or lower surface too much. Thus, splitters or slabs cannot serve as valid aerodynamic means. Wind tunnel test results show that VIV can only be mitigated when wind fairings are mounted, by which the flow field above and below the bridge deck are accelerated simultaneously.

단면 수정계수를 이용한 이동 하중에 따른 트러스 연결부의 응력해석 (Stress Analysis of Truss Connection subjected to Moving Load Using Section Properties Factor)

  • 이상호;배기훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.354-361
    • /
    • 2002
  • This paper propose section properties factor to generate stress history for fatigue analysis and safety inspection of steel bridge. A methodology is described for the computation of numerical stress histories in the steel truss bridge, caused by the vehicles using section properties factor. The global 3-D beam model of bridge is combined with the local shell model of selected details. Joint geometry is introduced by the local shell model. The global beam model takes the effects of joint rigidity and interaction of structural elements into account. Connection nodes in the global beam model correspond to the end cross-section centroids of the local shell model. Their displacements are interpreted as imposed deformations on the local shell model. The load cases fur the global model simulate the vertical unit force along the stringers. The load cases fer the local model are imposed unit deformations. Combining these, and applying vehicle loads, numerical stress histories are obtained. The method is illustrated by test load results of an existing bridge.

  • PDF