• Title/Summary/Keyword: bridge connections

Search Result 96, Processing Time 0.024 seconds

Effect of post weld treatment on cracking behaviors of beam-column connections in steel bridge piers

  • Jia, Liang-Jiu;Ge, Hanbin;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.687-704
    • /
    • 2014
  • A great number of moment-resisting steel structures collapsed due to ductile crack initiation at welded beam-column connections, followed by explosive brittle fracture in the Kobe (Hyogoken-Nanbu) earthquake in 1995. A series of experimental and numerical studies on cracking behaviors of beam-column connections in steel bridge piers were carried out by the authors' team. This paper aims to study the effect of post weld treatment on cracking behaviors of the connections during a strong earthquake event. Experiments of three specimens with different weld finishes, i.e., as-welded, R-finish, and burr grinding, were conducted. The experimental results indicate that the instants of ductile crack initiation are greatly delayed for the specimens with R-finish and burr grinding finishes compared with the as-welded one. The strain concentration effect in the connection is also greatly reduced in the specimens with post weld treatment compared with the as-welded one, which was also verified in the tests.

Effect of a two bearing lines deck on the bridge substructure

  • Shaker, Fatemeh;Rahai, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.117-129
    • /
    • 2022
  • This research evaluated the different types of deck to pier connections effects (one or two elastomeric bearing lines and rigid) on a concrete bridges. Three-dimensional bridge models behavior with different deck to pier connections and different distances of two bearing lines were studied under the service load. Also, the detailed connection system with two elastomeric bearing lines was modeled to evaluate the effect of changing distance between two-lines. Results indicated that the proper location of elastomeric bearings has a major impact on the transferring forces to the substructure. Double elastomeric bearing lines have a behavior between one line and rigid connections. Transferring bending moment to the substructure in two-lines is more than the corresponding value of the one line. Moreover, an increase in the distance of two-lines lead to a significant increase in the rotational stiffness of the connection, and an analytical solution was investigated for their relation. In fact, the semi-rigidity effect of this connection and its change due to the distance of bearings should be considered in the design process.

Analysis on the Rigid Connections between the Large Diameter Drilled Shaft and the Pile Cap for the Sea-Crossing Bridges with Multiple Pile Foundations (다주식 기초 해상교량에서 대구경 현장타설말뚝과 파일캡의 강결합에 대한 분석)

  • Cho, Sung-Min;Park, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.343-358
    • /
    • 2008
  • Piles of a bridge pier are connected with a column through a pile cap(footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. This difference causes a change of the design method. Connection methods between pile heads and the pile cap are divided into two groups ; rigid connections and hinge connections. KHBDC(Korea Highway Bridge Design Code) has specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However some specifications prescribe that conservative results through investigations for both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which have very good quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) are unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the very large diameter drilled shaft and the pile cap for Incheon Bridge which will the longest bridge in Korea were investigated through the full modeling for rigid connection conditions.

  • PDF

Influence of shear bolt connections on modular precast steel-concrete composites for track support structures

  • Mirza, Olivia;Kaewunruen, Sakdirat
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.647-659
    • /
    • 2018
  • Through extensive research, there exist a new type of connection between railway bridge girders and steel-concrete composite panels. In addition to conventional shear connectors, newly developed blind bolts have been recently adopted for retrofitting. However, the body of knowledge on their influence and application to railway structures has not been thoroughly investigated. This study has thus placed a particular emphasis on the application of blind bolts on the Sydney Harbour Bridge as a feasible alternative constituent of railway track upgrading. Finite element modeling has been used to simulate the behaviours of the precast steel-concrete panels with common types of bolt connection using commercially available package, ABAQUS. The steel-concrete composite track slabs have been designed in accordance with Australian Standards AS5100. These precast steel-concrete panels are then numerically retrofitted by three types of most practical bold connections: head studded shear connector, Ajax blind bolt and Lindapter hollow bolt. The influences of bolt connections on load and stress transfers and structural behaviour of the composite track slabs are highlighted in this paper. The numerical results exhibit that all three bolts can distribute stresses effectively and can be installed on the bridge girder. However, it is also found that Lindapter hollow bolts are superior in minimising structural responses of the composite track slabs to train loading.

Cyclic and static behaviors of CFT modular bridge pier with enhanced bracings

  • Kim, Dongwook;Jeon, Chiho;Shim, Changsu
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1221-1236
    • /
    • 2016
  • Modular structures consist of standardized modules and their connections. A modular bridge pier is proposed to accelerate bridge construction. Multiple concrete-filled steel tubes (CFTs) using commercial steel tubes were chosen as the main members. Buckling restrained bracings and enhanced connection details were designed to prevent premature low-cycle fatigue failure upon cyclic loading. The pier had a height of 7.95 m, widths of 2.5 m and 2.0 m along the strong and weak axis, respectively. Cyclic tests were performed on the modular pier to investigate structural performance. Test results showed that four CFT columns reached yielding without a premature failure of the bracing connections. The ultimate capacity of the modular pier was reasonably estimated based on the plastic-hinge-analysis concept. The modular CFT pier with enhanced bracing showed improved displacement ductility without premature failure at the welding joints.

Seismic performance of single pier skewed bridges with different pier-deck connections

  • Attarchiana, Nahid;Kalantari, Afshin;Moghadam, Abdolreza S.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1467-1486
    • /
    • 2016
  • This research focuses on seismic performance of a class of single pier skewed bridges with three different pier-deck connections; skew angles vary from $0^{\circ}$ to $60^{\circ}$. A well-documented four span continuous deck bridge has been modeled and verified. Seat-type connections with fixed and sliding bearings plus monolithic pier-deck connections are studied. Shear keys are considered either fully operational or ineffective. Seismic performances of the bridges and the structural components are investigated conducting bidirectional nonlinear time history analysis in OpenSees. Several global and intermediate engineering demand parameters (EDP) have been studied. On the basis of results, the values of demand parameters of skewed bridges, such as displacement and rotation of the deck plus plastic deformation and torsional demand of the piers, increase as the skew angle increases. In order to eliminate the deck collapse probability, the threshold skew angle is considered as $30^{\circ}$ in seat-type bridges. For bridges with skew angles greater than $30^{\circ}$, monolithic pier-deck connections should be applied. The functionality of shear keys is critical in preventing large displacements in the bearings. Pinned piers experience considerable ductility demand at the bottom.

Strengthened and flexible pile-to-pilecap connections for integral abutment bridges

  • Lee, Jaeha;Kim, WooSeok;Kim, Kyeongjin;Park, Soobong;Jeong, Yoseok
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.731-748
    • /
    • 2016
  • Pile-to-pilecap connection performance is important as Integral abutment bridges (IABs) have no expansion joints and their flexible weak-axis oriented supporting piles take the role of the expansion joint. This connection may govern the bridge strength and the performance against various lateral loads. The intention of this study is to identify crack propagation patterns when the pile-to-pilecap connection is subjected to lateral loadings and to propose novel connections for improved performance under lateral loadings. In this study, eight different types of connections were developed and modeled, using Abaqus 6.12 to evaluate performances. Three types were developed by strengthening the connections using rebar or steel tube: (i) PennDOT specification; (ii) Spiral rebar; and (iii) HSS tube. Other types were developed by softening the connections using shape modifications: (i) cylindrical hole; (ii) reduced flange; (iii) removed flange; (iv) extended hole; and (v) slot hole connection types. The connections using the PennDOT specification, HSS tube, and cylindrical hole were shown to be ineffective in the prevention of cracks, resulting in lower structural capacities under the lateral load compared to other types. The other developed connections successfully delayed or arrested the concrete crack initiations and propagations. Among the successful connection types, the spiral rebar connection allowed a relatively larger reaction force, which can damage the superstructure of the IABs. Other softened connections performed better in terms of minimized reaction forces and crack prevention.

Analysis on the Rigid Connections of the Drilled Shaft with the Cap for Multiple Pile Foundations (현장타설말뚝을 적용한 다주식 기초에서 말뚝과 캡의 강결합에 대한 분석)

  • Cho, Sung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.61-73
    • /
    • 2008
  • Piles of a bridge pier are connected with the column through the pile cap (footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. Connection methods between pile heads and the pile cap are divided into two groups : rigid connections and hinge connections. Domestic design code has been specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However, some specifications prescribe that conservative results through investigations of both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which has high-quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) is unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the large diameter drilled shaft and the pile cap for Incheon Bridge which will be the longest bridge of Korea were investigated through the full modeling for rigid connection conditions.

Earthquake Resistance Design for a Typical Bridge Substructure (일반교량 하부구조의 내진설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2011
  • For the earthquake resistance design designer should provide that structural yielding process is principally designed with the ductile failure mechanism. In order to get the ductile failure mechanism for typical bridges, pier columns yielding should occur before that of connections. However domestic bridge design with unnecessary stiff substructure leads to unnecessary seismic loads and makes it difficult to get the ductile failure mechanism. Such a problem arises from the situation that earthquake resistant design is not carried out in the preliminary design step. In this study a typical bridge is selected as an analysis bridge and design strengths for connections and pier columns are determined in the preliminary design step by carrying out earthquake resistant design. It is shown through this procedure that it is possible to get the ductile failure mechanism with structural members determined by other design.

Stochastic finite element analysis of structural systems with partially restrained connections subjected to seismic loads

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Kartal, Murat Emre
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.499-518
    • /
    • 2009
  • The present paper investigates the stochastic seismic responses of steel structure systems with Partially Restrained (PR) connections by using Perturbation based Stochastic Finite Element (PSFEM) method. A stiffness matrix formulation of steel systems with PR connections and PSFEM and MCS formulations of structural systems are given. Based on the formulations, a computer program in FORTRAN language has been developed, and stochastic seismic analyses of steel frame and bridge systems have been performed for different types of connections. The connection parameters, material and geometrical properties are assumed to be random variables in the analyses. The Kocaeli earthquake occurred in 1999 is considered as a ground motion. The connection parameters, material and geometrical properties are considered to be random variables. The efficiency and accuracy of the proposed SFEM algorithm are validated by comparison with results of Monte Carlo simulation (MCS) method.