• Title/Summary/Keyword: bridge bearings

Search Result 171, Processing Time 0.041 seconds

Response Characters of Bridge Adopting StLRB (StLRB 지진격리장치를 적용한 교량의 거동특성과 비교분석)

  • Choi, Seung-Ho;Han, Kyoung-Bong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.139-146
    • /
    • 2004
  • In this paper, the seismic analysis and the modeling techniques have been introduced for seismic performances assessment, when seismic isolation bearings are applied to a real bridge. Nonlinear time-history analysis is carried out using finite element analysis program. El Centro earthquake(1940, N00W) used as earthquake ground excitations. The seismic response of seismically isolated bridge is compared with that of a bridge using conventional Pot Bearings, after obtaining the displacements of the deck, the deformations of the piers, shear forces and moments of the bottoms of the piers. The analytical analysis results show that seismic isolation bearing, especially seismic isolation bearings with sliding mechanism, could reduce earthquake forces.

Numerical Analysis of Accumulated Sliding Distance of Pre-Stressed Concrete (PSC) Bridge Bearing for High-Speed Railway for Ubiquitous Technology (유비쿼터스 기술을 위한 고속철도상 Pre-Stressed Concrete(PSC) 교량받침의 누적수평이동거리에 관한 수치해석)

  • Oh, Soontaek;Lee, Dongjun;Lee, Hongjoo;Jeong, Shinhyo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • Numerical analysis of PSC box bridge bearings for high speed KTX train vehicles has been carried out as a virtual simulation for Ubiquitous Technology. Improved numerical models of bridge, vehicle and interaction between bridge and train are considered, where bending and torsional modes are provided, whereas the exist UIC code is applied by the simplified HL loading. Dynamic and static analysed results are compared to get Dynamic Amplification Factors (D. A. F.) for maximum deflections and bending stresses up to running speed of 500 km/h. Equation from the regression analysis for the D. A. F. is presented. Sliding distance of the bearings for various KTX running speeds is compared with maximum and accumulated distances by the dynamic behaviors of PSC box bridge. Dynamic and static simulated sliding distances of the bearings according to the KTX running speed are proved as a major parameter in spite of the specifications of AASHTO and EN1337-2 focused on the distance by temperature variations.

Acquisition and Accuracy Assessment of topographic information of inaccessible areas (위성영상을 이용한 비접근지역의 지형정보 획득 및 정확도 평가)

  • 고종식;최윤수;김욱남;이상준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.393-398
    • /
    • 2004
  • It is transformed map data of different coordinate system into unique system and We triedto make topographic map on non-accessible area. We transformed Russian map coordinates(Krassovsky, G-K projection) intoWGS-84, TM projection and assessed accuracy. The RMSE(in East and West bearings : ${\pm}$13.67m, in North and South bearings : ${\pm}$14.67m) using only SCP(Survey Control Point) is more accurate than that(in East and West bearings : ${\pm}$24.26m, in North and South bearings : ${\pm}$25.32m) using SCP, intersection of road, bridge. Exterior orientation parameters are estimated using rigorous modelling and GCPs are classified with SCP, intersection of road, bridge. Rigorous modelling is performed with each classified GCP. The modelling result usingonly SCP(in East and West bearings : ${\pm}$13.53m, in North and South bearings : ${\pm}$14.22m) is more accurate than that using intersection of road(in East and West bearings : ${\pm}$16.l1m, in North and South bearings: ${\pm}$23.85m), bridge(in East and West bearings : ${\pm}$17.21m, in North and South bearings : ${\pm}$21.82m). The results means that SCP is more accurate than intersection of road, bridge because of edit to generate map. therefore, SCP is suitable for object of GCP in paper map(1:50,000). Geographic information on non-accessible area and analysis is performed. The results of stereoscopic plotting is well matched old map data on road, railroad but, many objects are generally editted. It is possible to update on new objects(building, tributary ‥‥etc). Ability of description using SPOT-5(stereo) is more than features and items included in 1:50,000 topographic map. Therefore, it is possible to make large scale map than 1:50,000 topographic map using SPOT-5 imagery. But, there are many problems(accurate GCPs, obtain of high resolution stereoscopic satellite imagery in a period ‥‥ etc) to make topographic map on non-accessible area. It is actually difficult to solve these problems. therefore, it is possible to update 1:50,000 topographic map in part of topographic map generation.

  • PDF

Comparisons of Behavioral Characteristics and Seismic Performance of Seismic Isolation Bearing Systems (면진용 교좌장치의 거동 특성과 내진 성능 비교)

  • 한규승;한경봉;박선규
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.79-89
    • /
    • 2000
  • In this paper, the seismic analysis and the modeling techniques have been introduced for aseismic performances assessment, when seismic isolation bearings are applied on a real bridge. Nonlinear time-history analysis is carried out using finite element analysis program. In this study, EI Centro earthquake(1940, N00W), Mexico earthquake(1985, N90W), and earthquake simulation from modified SIMQKE are used as earthquake ground excitations. The seismic response of seismically isolated bridge is compared with that of a bridge using conventional Pot Bearings, after obtaining the displacements of the deck, the deformations of the piers, shear forces and moments of the bottoms of the piers. The analytical analysis results show that seismic isolation bearing, especially seismic isolation bearings with sliding mechanism, could reduce earthquake forces.

Multi-support excitation shaking table test of a base-isolated steel cable-stayed bridge (지진격리 강재 케이블 교량의 다지점 진동대 실험)

  • Kim, Seong-Do;Ahn, Jin-Hee;Kong, Young-Ee;Choi, Hyoung-Suk;Cheung, Jin-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.161-171
    • /
    • 2015
  • A series of tests was conducted for full-scale single-pylon asymmetric cable-stayed bridges using a system of multiple shaking tables. The 2-span bridge length was 28 m, and the pylon height was 10.2 m. 4 different base conditions were considered: the fixed condition, RB (rubber bearings), LRB (lead rubber bearings), and HDRB (high damping rubber bearings). Based on investigation of the seismic response, the accelerations and displacements in the axial direction of the isolated bridge were increased compared to non-isolated case. However, the strain of the pylon was decreased, because the major mode of the structure was changed to translation for the axial direction due to the dynamic mass. The response of the cable bridge could differ from the desired response according to the locations and characteristics of the seismic isolator. Therefore, caution is required in the design and prediction in regard to the location and behavior of the seismic isolator.

Effectiveness of classical rolling pendulum bearings

  • Raftoyiannis, Ioannis G.;Michaltsos, George T.
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.127-139
    • /
    • 2017
  • During the last decades, Pendulum Bearings with one or more concave sliding surfaces have been dominating bridge structures. For bridges with relative small lengths, the use of classical pendulum bearings could be a simple and cheaper solution. This work attempts to investigate the effectiveness of such a system, and especially its behavior for the case of a seismic excitation. The results obtained have shown that the classical pendulum bearings are very effective, mainly for bridges with short or intermediate length.

Effects of Bearing Damage on Bridge Seismic Responses (교량시스템의 지진응답특성에 미치는 받침손상의 영향)

  • 김상효;마호성;이상우;조병철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.287-294
    • /
    • 2001
  • Dynamic responses of multi-span simply supported bridges are investigated to examine the effect of damaged bearings under seismic excitations. The damaged bearings are modeled as sliding elements with friction between the super-structure and the pier top. Various values of the friction coefficients for damaged bearings are examined with increasing magnitudes of peak ground accelerations. It is found that the g1oba1 seismic behaviors are significantly influenced by the occurrence of bearing damage. It should be noticed that the most possible location of unseating failure of superstructures differs with that in the model without consideration of the bearing damage. It can be concluded that the bearing damage may play the major role in the unseating failure of a bridge system, so that the damage of bearings should be included to achieve more rational seismic safety evaluation.

  • PDF

Seismic base isolation for highway steel bridges using shape memory alloys (형상기억합금을 이용한 고속도로 강교량의 면진)

  • Choi, Eun Soo;Jeon, Jun Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.145-153
    • /
    • 2004
  • Conventional lead-rubber bearings may be unstable in case of strong ground motions. To address this problem, this paper proposed a new concept of isolation device wherein shape memory alloy wires were incorporated in an elastomeric bearing. A three-span continuous steel bridge was used for seismic analyses to compare the performance of lead-rubber and proposed bearings. The proposed bearings showed almost the same performance as the lead-rubber bearings. In particular, the proposed bearings limited relative displacement effectively with strong ground motions and recovered its original undeformed shape.

Horizontal stiffness solutions for unbonded fiber reinforced elastomeric bearings

  • Toopchi-Nezhad, H.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.395-410
    • /
    • 2014
  • Fiber Reinforced Elastomeric Bearings (FREBs) are a relatively new type of laminated bearings that can be used as seismic/vibration isolators or bridge bearings. In an unbonded (U)-FREB, the bearing is placed between the top and bottom supports with no bonding or fastening provided at its contact surfaces. Under shear loads the top and bottom faces of a U-FREB roll off the contact supports and the bearing exhibits rollover deformation. As a result of rollover deformation, the horizontal response characteristics of U-FREBs are significantly different than conventional elastomeric bearings that are employed in bonded application. Current literature lacks an efficient analytical horizontal stiffness solution for this type of bearings. This paper presents two simplified analytical models for horizontal stiffness evaluation of U-FREBs. Both models assume that the resistance to shear loads is only provided by an effective region of the bearing that sustains significant shear strains. The presented models are different in the way they relate this effective region to the horizontal bearing displacements. In comparison with experimental results and finite element analyses, the analytical models that are presented in this paper are found to be sufficiently accurate to be used in the preliminary design of U-FREBs.

Review of effects of friction coefficient of moving bearing on Stability of CWR (가동단 마찰계수가 장대레일 축력 안정성에 미치는 영향 검토)

  • Ryu Jae-Nam;Choi Young-Joon;Yang Sin-Chu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.812-817
    • /
    • 2004
  • Recently drastic improvement of railway technology has been accompanied by the construction of very high-speed tracks. It should be noticed that Continuously Welded Rail(CWR) has played significant role in technical development of railway and that installation of CWR is now being scheduled on existing lines as well as newly-built lines. In general, interaction between CWR and bridge deck takes place on bridge section and additional axial force and displacement is to be developed owing to temperature and braking/acceleration forces. This interaction is known to be mainly governed by span organizations and arrangements of foot bearings. In common practice, movable bearing is stationed and designed on the assumption that it is not able to transfer the horizontal force of upper decks. However, it is well known that horizontal resistance is developed in movable bearings due to friction and that friction coefficient of movable bearing is ranged from 0.03 to 0.20 depending on the material of bearings and magnitude of reactions. Therefore, it is easily reasoned out that friction of movable bearing can influence the mutual behavior of CWR and bridge decks. Suggested in this study is to investigate the validity and efficiency of friction effect of movable bearings in controlling the axial force and displacement of CWR on continuous railway bridges.

  • PDF