• Title/Summary/Keyword: breathable waterproof material

Search Result 5, Processing Time 0.019 seconds

Changes in Waterproofness and Breathability after Repeated Laundering and Durability of Electrospun Nanofiber Web Laminates (전기방사한 나노섬유 웹 라미네이트 소재의 반복 세탁에 따른 투습방수 성능 변화 및 내구성)

  • Lee, Kyung;Yoon, Bo-Ram;Lee, Seung-Sin
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.122-129
    • /
    • 2012
  • To develop a waterproof breathable material, we fabricated three kinds of nanofiber web laminates using a massproduced electrospun nanofiber web with different substrates and layer structures. The waterproofness and breathability of nanofiber web laminates were evaluated after repeated launderings and compared with those of conventional waterproof breathable fabrics currently in use, including densely woven fabric, microporous membrane laminated fabric, and coated fabric. The durability of nanofiber web laminates, including adhesion strength, abrasion resistance, tensile strength, and tearing strength, was also assessed and compared with those of conventional waterproof breathable fabrics. The water vapor transmission of nanofiber web laminates increased slightly after repeated launderings, whereas the air permeability somewhat decreased after launderings but still maintained an acceptable level of air permeability. Laundering reduced the resistance to water penetration of nanofiber web laminates, which implies that laminating techniques or substrate materials that could support waterproofness of the laminated structure should be explored. The adhesion strength, abrasion resistance, tensile strength, and tearing strength of nanofiber web laminates were in a range comparable to conventional waterproof breathable materials.

Comparison of Mechanical Properties of Electrospun Nanofiber Web Layered Systems and Conventional Breathable Waterproof Fabrics (전기방사한 나노섬유 웹 처리소재와 상용 투습방수소재의 역학적 특성 비교)

  • Youn, Bo-Ram;Lee, Seung-Sin
    • Science of Emotion and Sensibility
    • /
    • v.13 no.2
    • /
    • pp.391-402
    • /
    • 2010
  • In this study, breathable waterproof materials were prepared by electrospinning. Five kinds of electrospun nanofiber web layered systems with different levels of nanofiber web density, as well as different substrates and layer structures were fabricated, and their mechanical properties (tensile, bending, shear, compression, surface, and thickness & weight) were measured by the KES-FB system and compared with those of conventional breathable waterproof fabrics (densely woven fabric, PTFE laminated fabric and PU coated fabric). The KES-FB measurements demonstrate that the lab-scale nanofiber web layered systems are more flexible and fuller than commercial nanofiber web layered systems, which have a more compact structure than the lab-scale nanofiber web layered systems. Densely woven fabrics and lab-scale nanofiber web layered systems showed lower values of tensile linearity (LT), bending stiffness (B), and shear stiffness (G) than those of PU coated and PTFE laminated fabric. These results indicate that they are more flexible and have less resistance to the shearing movement, corresponding to a more pliable material having a better drape, than PU coated fabrics and PTFE laminated fabrics.

  • PDF

A Study on the Improvement of Cold Protective Clothing for Mailman (우편배달원 방안복 개선을 위한 연구)

  • Kwon, Myoung-Sook;Seok, Hye-Jung
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.8
    • /
    • pp.14-23
    • /
    • 2007
  • The purpose of this study was to investigate the present condition of cold protective clothing for mailman, to improve its design in movement, fitness, and other functions, and supply basic data for its performance evaluation. The results are as follows : The 46.60% of those questioned did not satisfy current clod protective clothing fer mailman. Especially, they considered dissatisfactory in properties such as waterproof, comfort, activity, and sweat absorption. The newly developed cold protective clothing is two-piece style composed of jacket and pants. Both jacket and pants are composed of inner and outer clothing individually. In both jacket and pants, their outer clothing's material was waterproof, windproof, and breathable shell fabric on which PTFE film laminated and their inner clothing's material was 100% polyester Polar polis to have better insulation property. The jacket has attachable cap which can be used as rain gear and set-in sleeve with stand collar. It also had big outside patch pockets and side seam pockets to ensure enough storage space. The pants have knee pads to give free movement to knees and slant side pockets. Inner clothing of both jacket and pants can be worn during working inside without out clothing. Insulation of the newly developed cold protective clothing was not better than current one except right hand, left hand and left foo. It is considered that is because thickness of material is the most important factor to influence insulation.

Design Development for Toddler's Playwear (유아(幼兒)의 놀이복 디자인 개발 연구)

  • Lee, Youn-Hee;Park, Hye-Won
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.8
    • /
    • pp.1227-1240
    • /
    • 2009
  • This study examines the actual conditions of toddler playwear preference survey for design and function. The study develops proper indoor and outdoor playwear for toddlers based on the analysis. A survey of 200 parents with toddlers between 2 and 6 years old and 120 teachers was conducted to find the conditions and needs for playwear along with the necessary design elements. Second, 6 designs including 3 designs for indoor playwear and 3 designs for outdoor playwear were made. These designs emphasized on soil contamination part, color, pattern, form, material, detail, and fasteners. Art play and cooking play are considered for indoor playwear and ways to decrease contamination on sleeve hem, elbow, chest, and knee were determined through the use of yellow, green, and blue colors. Applying a character and separate top with sleeves were determined. Light with breathable and waterproof fabric was determined. The correct amount of Velcro fasteners or buttons was determined for front fastening in addition a pocket was considered necessary as a detail part. The common design for both boys and girls along with a proper design for diverse play were determined. For outdoor playwear, water play, sand play, movement play, and ecology experience are considered and ways to decease contamination on hip, sleeve hem, and knee should be applied to the design as determined through the use of yellow, green, blue, and red colors. The demands for pattern, form, material, and details were similar to indoor playwear. Zipper and buttons for front fastening were determined. These final 6 playwear designs are presented using CAD WALK DESIGNWARE.

Silica Aerogel Blanket Processing Technologies for Use as a Widespread Thermal Insulation Material (범용 단열재로 활용하기 위한 실리카 에어로젤 블랭킷의 처리 기술)

  • Jae-Wook Choi;Young Su Cho;Dong Jin Suh
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.237-243
    • /
    • 2023
  • Aerogel is the most excellent insulation material known to date, but it is inflexible and has very low strength. A blanket containing aerogel in a nonwoven fabric or fiber is currently the most practical form. However, aerogel blankets are not yet widely used because they cannot avoid dust generation when handled, lack flexibility, and can possibly deform. In this study, vacuum treatment, surface treatment, and composite materialization technology were applied to solve this problem, and some prototypes were also made. If an aerogel blanket is wrapped in an aluminum sheet, sealed at the four ends, and vacuumed, it can become a material with better insulation than the blanket itself. An aerogel molded body can be made by coating the aerogel blanket with resin and treating the surface. If the aerogel blanket is multi-packed and laminated with resin or fiber in multiple layers to make it a composite material, it can be used as a flexible insulation material. In particular, this composite material, which utilizes a Teflon membrane with controlled pores, is breathable and waterproof, so it can be used for clothing. Prototypes of insoles for winter boots and outdoor roll mats were also produced using aerogel blanket resin and fiber composites. These prototypes showed low thermal conductivity of less than 20 mW m-1K-1, with good flexibility and durability.