• Title/Summary/Keyword: breakthrough curve

Search Result 125, Processing Time 0.033 seconds

Learning Curve of the Direct Anterior Approach for Hip Arthroplasty (직접전방 접근법을 통한 인공 고관절 치환술의 학습곡선)

  • Ham, Dong Hun;Chung, Woo Chull;Choi, Byeong Yeol;Choi, Jong Eun
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.2
    • /
    • pp.143-153
    • /
    • 2020
  • Purpose: To evaluate the timing of the improvement in surgical skills of the direct anterior approach for hip arthroplasty through an analysis of the clinical features and learning curve in 58 cases. Materials and Methods: From November 2016 to November 2018, 58 patients, who were divided into an early half and late half, and underwent hip arthroplasty by the direct anterior approach, were enrolled in this retrospective study. The operation time and complications (fracture, lateral femoral cutaneous nerve injury, heterotopic ossification, infection, and dislocation) were assessed using a chi-square test, paired t-test, and cumulative sum (CUSUM) test. Results: The mean operation times in total hip arthroplasty (26 cases) and bipolar hemi-arthroplasty were 132.1 minutes and 79.7 minutes, respectively, demonstrating a significant difference between the two groups. CUSUM analysis based on the results revealed breakthrough points of the operation time, decreasing to less than the mean operation time because of the 16th case in total hip arthroplasty and 14th case in bipolar hemiarthroplasty. Complications were encountered in the early phase and late phase: five cases of fractures in the early phase, no case in the late phase; eight and two cases of lateral femoral cutaneous nerve injury, respectively; three and two cases of heterotopic ossification, respectively; and one case of dislocation, one case of infection and three cases of others in the early phase. The CUSUM chart for the fracture rate during operation in the early phase revealed the following: five cases fracture (17.2%) in the early phase and no case in the late phase (0%). This highlights the learning curve and the need for monitoring the inadequacy of operation based on the complications. Conclusion: Hip arthroplasty performed by the direct anterior approach based on an anatomical understanding makes it difficult to observe the surgical field and requires a learning curve of at least 30 cases.

Transport and Fate of Benzene in a Sandy Soil (사질토양에서의 Benzene의 이동성에 관한 연구)

  • 백두성;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 1999
  • Hydrocarbon compounds in vadose zone soils caused by adsorption onto the surfaces of solid particles are generally considered to show retardation effect. In this study, we investigated the retardation effect on the transport of Benzene in a sandy soil by conducting batch and column tests. The batch test was conducted by equilibrating dry soil mass with Benzene solutions of various initial concentrations. and by analyzing the concentrations of Benzene in initial and equilibrated solutions using HPLC. The column test consisted of monitoring the concentrations of effluent versus time known as a breakthrough curve (BTC). We used KCl and Benzene solutions with the concentration of 10 g/L and 0.88 g/L as a tracer, and injected them into the inlet boundary of the soil sample as a square pulse type respectively, and monitored the effluent concentrations at the exit boundary under a steady state condition using an EC-meter and HPLC. From the batch test, we obtained a distribution coefficient assuming that a linear adsorption isotherm exists and calculated the retardation factor based on the bulk density and porosity of the column sample. We also predicted the column BTC curve using the retardation factor obtained from the distribution coefficient and compared with the measured BTC of Benzene. The results of the column test showed that i) the peak concentration of Benzene was much smaller than that of KCl and ⅱ) the travel times of peak concentrations for the two tracers were more or less identical. These results indicate that adsorption of Benzene onto the sand panicles occurred during the pulse propagation but the retardation of Benzene caused by adsorption was not present in the studied soil. Comparison of the predicted with the measured BTC of Benzene resulted in a poor agreement due to the absence of the retardation phenomenon. The only way to describe the absolute decrease of Benzene concentration in the column leaching experiment was to introduce a decay or sink coefficient in the convection-dispersion equation (CDE) model to account for an irreversible sorption of Benzene in the aqueous phase.

  • PDF

Predicting Migration of a Heavy Metal in a Sandy Soil Using Time Domain Reflectometry (TDR을 이용한 사질토양에서의 중금속 이동 추정)

  • Dong-Ju Kim;Doo-Sung Baek;Min-Soo Park
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • Recently, transport parameters of conservative solutes such as KCl in a porous medium have been successfully determined using time domain reflectometry (TDR) . This study was initiated to Investigate the applicability of TDR technique to monitoring the fate of a heavy metal ion in a sandy soil and the distribution of its concentration along travel distance with time. A column test was conducted in a laboratory that consists of monitoring both resident and flux concentrations of $ZnCl_2$in a sandy soil under a breakthrough condition. A tracer of $ZnCl_2$(10 g/L) was injected onto the top surface of the sample as pulse type as soon as a steady-state condition was achieved. Time-series measurements of resistance and electrical conductivity were performed at 10 cm and 20 cm of distances from the inlet boundary by horizontal-positioning of parallel TDR metallic rods and using an EC-meter for the effluent exiting the bottom boundary respectively. In addition. Zn ions of the effluent were analyzed by ICP-AES. Since the mode and position of concentration detected by TDR and effluent were different, comparison between ICP analysis and TDR-detected concentration was made by predicting flux concentration using CDE model accommodating a decay constant with the transport parameters obtained from the resident concentrations. The experimental results showed that the resident concentration resulted in earlier and higher peak than the flux concentration obtained by EC-meter, implying the homogeneity of the packed sandy soil. A close agreement was found between the predicted from the transport parameters obtained by TDR and the measured $ZnCl_2$concentration. This indicates that TDR technique can also be applied to monitoring heavy metal concentrations in the soil once that a decay constant is obtained for a given soil.

  • PDF

Characteristics of Heavy Metal Releases from the Abandoned Dogog Mine Tailing in Korea (도곡광산 광미의 중금속 용출 특성)

  • Park, Chang-Jin;Kim, Won-Il;Jeong, Goo-Bok;Lee, Jong-Sik;Ryu, Jong-Su;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.316-322
    • /
    • 2006
  • Objective of this research was to assess the release characteristics of metals from the mine tailing to base the prediction of metal load potential from tailing to soils. Water-soluble concentrations of Cd, Cu, Pb and Zn released from mine tailing after 2 hrs were 2.31, 129.38, 17.17, and 287.53 mg/kg, respectively, as compared to 1.6, 128, 108, and 142 mg/kg that were extractable by 0.1 M HCl. Kinetics of metal releases followed the power function model significantly indicating that more of water soluble fractions of those metals released at the initial short time, followed by a slow increase. Concentrations of metals released from tailing by water and 0.1 M HCl were in the orders of Zn > Cu > Pb > Cd. The breakthrough curve from the column experiment showed that concentrations of Cd, Cu, and Zn reached at highest after one pore volume, but that of Pb reached highest after five pore volumes when 0.1 M HCl was used as eluent. The release rate of Cd from mine tailing was the fastest but Pb was the slowest. The cumulative mass of metal released by 0.1 M HCl was in the order of Zn > Cu > Pb > Cd after nine pore volume elution.

Migration and Retardation Properties of Uranium through a Rock Fracture in a Reducing Environment (환원환경에서 암반 균열을 통한 우라늄 이동 및 지연 특성)

  • Baik, Min-Hoon;Park, Chung-Kyun;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.113-122
    • /
    • 2007
  • In this study, uranium migration experiments have been performed using a natural groundwater and a granite core with natural fractures in a glove-box constructed to simulate an appropriate subsurface environment. Groundwater flow experiments using the non-sorbing anionic tracer Br were carried out to analyze the flow properties of groundwater through the fracture of the granite core. The result of the uranium migration experiment showed a breakthrough curve similar to that of the non-sorting Br. This result may imply that uranium migrates as anionic complexes through the rock fracture since uranium can form carbonate complexes at a given groundwater condition. The distribution coefficient $K_d$ of the uranium between the groundwater and the fracture filling material was obtained as low as 2.7 mL/g from a batch sorption experiment. This result agrees well with the result from the migration experiment, showing a faster elution of the uranium through the rock fracture. In order to analyze retardation properties of the uranium through the rock fracture, the retardation factor $R_d({\sim}16.2)$ was obtained by using the $K_d$ obtained from the batch sorption experiment and it was compared with the $R_d({\sim}14.3)$ obtained by using the result from the uranium migration experiment. The values obtained from the both experiments were very similar to each other. This reveals that the retardation of the uranium is mainly occurred by the fracture filling material when the uranium migrates through the fracture of a granite core.

  • PDF

Retardation Effect and Mobility of a Heavy Metal in a Sandy Soil (사질토양에서의 중금속의 지연효과와 이동성)

  • Kim, Dong-Ju;Baek, Doo-Sung
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.155-161
    • /
    • 1998
  • Retardation effect of heavy metals in soils caused by adsorption onto the surfaces of solids particles is well known phenomenon. In this study, we investigated the retardation effect on the mobility of a Zn in a sandy soil by conducting batch and column tests. The column test consisted of monitoring the concentrations of effluent versus time known as a breakthrough curve (BTC). We used NaCl and ZnCl$_2$ solutions with the concentration of 10 g/L as a tracer, and injected them respectively into the inlet boundary of the soil sample as a square pulse type, and monitored the effluent concentrations at the exit boundary under a steady state condition using an EC-meter and ICP-AES. The batch test was conducted based on the standard procedure of equilibrating fine fractions collected from the soil with various initial ZnCl$_2$ concentrations, and analysis of Zn ions in the equilibrated solutions using ICP-AES. The results of column test showed that i) the peak concentration of ZnCl$_2$analyzed by ICP was far less than that of either NaCl or bulk electrical conductivity and ⅱ) travel times of peak concentrations for two tracers were more less identical. The relatively low concentration of Zn can be explained by ion exchange between Zn and other cations, and possible precipitation of Zn in the form of Zn(OH)$_2$due to high pH range (7.0∼7.9) of the effluent. The identical result of travel times of peak concentrations indicates that the retardation effect is not present in the soil. The only way to describe the prominent decrease of Zn ion was to introduce decay or sink coefficient in the CDE model to account for irreversible decrease of Zn ions in the aqueous phase.

  • PDF

Adsorption of Amine and Sulfur Compounds by Cobalt Phthalocyanine Derivatives (코발트 프탈로시아닌 유도체에 의한 아민 및 황 화합물의 흡착)

  • Lee, Jeong Se;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.592-598
    • /
    • 2007
  • The adsorption capability of cobalt phthalocyanine derivatives was investigated by means of X-ray diffractometor (XRD), FT-IR spectroscopy, scanning electron microscopy (SEM), and temperature programmed desorption (TPD). According to TPD results for ammonia, cobalt phthalocyanine derivatives showed two desorption peaks at low temperature ($100{\sim}150^{\circ}C$) and high temperature ($350{\sim}400^{\circ}C$) indicating that there were two kinds of acidities. Tetracarboxylic cobalt phthalocyanine (Co-TCPC) has a stronger desorption peak (chemical adsorption) at high temperature and a weaker desorption peak (physical adsorption) at low temperature than cobalt phthalocyanine (Co-PC). The specific surface areas of Co-TCPC and Co-PC were 37.5 and $18.4m^2/g$, respectively. The pore volumes of Co-TCPC and Co-PC were 0.17 and $0.10cm^3/g$, respectively. The adsorption capability of triethyl amine calculated by breakthrough curve at 120 ppm of equilibrium concentration was 24.3 mmol/g for Co-TCPC and 0.8 mmol/g for Co-PC. The removal efficiencies of dimethyl sulfide of Co-TCPC and Co-PC in batch experiment of 225 ppm of initial concentration were 92 and 18%, respectively. The removal efficiencies of trimethyl amine of Co-TCPC and Co-PC in batch experiment of 118 ppm of initial concentration were 100 and 17%, respectively.

Method Validation for Monitoring of Agricultural Worker Exposure to Insecticide Fenthion (살충제 Fenthion에 대한 농작업자 노출 측정을 위한 분석/시험방법 검증)

  • Kim, Eun-Hye;Lee, Hye-Ri;Choi, Hoon;Moon, Joon-Kwan;Hong, Soon-Sung;Jeong, Mi-Hye;Park, Kyung-Hun;Lee, Hyo-Min;An, Xue Hua;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.357-365
    • /
    • 2011
  • Exposure measurement of agricultural worker to pesticide is one of important part of health risk assessment of pesticide. Therefore exposure matrices, apparatus, instruments and methods must be validated in advance to field experiment. In this study, method validation with an organophosphorus insecticide fenthion was carried out for exposure monitoring of agricultural worker. LOD and LOQ were 0.01 and 0.05 ng, respectively. Calibration curve linearity ($R^2$ > 0.999) and reproducibility (C.V. < 3%) were also excellent. Recovery at LOQ, 10LOQ and 100LOQ levels from gloves, socks, mask, patch, solid sorbent, glass fiber filter was 76~113% (C.V. < 3%). Trapping efficiency was 95~105% while no breakthrough was observed. Method validation for the exposure monitoring was established successfully through several experiments. Such method validation can be usually performed in laboratory and not much different for each pesticide so that, this techniques will be applied widely in research for pesticide exposure monitoring by combination with body surface area and respiration rates.

Adsorption Removal of Eosin Y by Granular Activated Carbon (입자상 활성탄에 의한 Eosin Y의 홉착제거)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.277-283
    • /
    • 2010
  • Eosin Y is used a colorant and dye but eosin Y is harmful toxic substance. In this study, the adsorption characteristics of granular activated carbon have been investigated for the adsorption of eosin dye dissolved in water. The effects of initial dye concentration, contact time, pH and temperature on adsorption of eosin by a fixed amount of activated carbon have been studied in batch adsorber and fixed bed. The adsorptivity of activated carbon for eosin Y were largely improved by pH control. When the pH was 3 in the sample, the eosin Y could be removed 99% of initial concentration (10 mg/L). The adsorption equilibrium data are successfully fitted to the Freundlich isotherm equation in the temperature range from 293 to 333 K. The estimated values of k and ${\beta}$ are 19.56-134.62, 0.442-0.678, respectively. The effects of the operation conditions of the fixed bed on the breakthrough curve were investigated. When the inlet eosin Y concentration is increased from 10 to 30 mg/L, the corresponding adsorption breaktime appears to decrease from 470 to 268 min at bed height of 3 cm and a constant flow rate of 2 g/min. When the initial eosin Y flow rate is increased from 1 to 3 g/min, the corresponding adsorption breaktime appears to decrease from 272 to 140 min at bed height of 3 cm and inlet concentration of 10 mg/L. Also, breaktime increased with increasing bed height at flow rate of 2 g/min and inlet concentration of 10 mg/L. And length of adsorption zone showed similar patterns.

A study on the separation and determination of the rare earth Elements by the AG® 50W-X8 cation exchange resin (AG® 50W-X8 양이온교환수지를 이용한 희토류원소의 분리와 분석에 관한 연구)

  • Lee, Jung Sook;Choi, Beom Suk
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.272-278
    • /
    • 2008
  • Methods to separate 14 rare earth elements (REEs) and yttrium by the $AG^{(R)}$ 50W-X8 cation exchange resin, and to determine REEs by inductively coupled plasma atomic emission spectrophotometry (ICP-AES) were described. Ion exchange capacities of REEs on the resin were so high that the REEs were quantitatively ion exchanged under the flow rate of 0.3~1.0 mL/min at pH 1~6. The breakthrough capacity curve of the REEs showed that ion exchange capacities of light REEs (Cerium group) were greater than that of the heavy REEs (Yttrium group). When $200{\mu}g$ of each REEs was ion exchanged on 100 mg of resin, most of the heavy REEs were quantitatively desorbed with 10 mL of 2.0 M of $HNO_3$, while most of the light REEs with 30 mL. The method was applied to the monazite sample. The REEs could be separated from matrix, since ion exchange capacities of matrix ions of Ca, Ti, Mg, Mn were much lower than that of the REEs. However the relative standard deviations of the analytical results by the present method were not improved, as high as 1~5%.