• 제목/요약/키워드: branched chain amino acids

검색결과 69건 처리시간 0.019초

Branched Chain 아미노산과 대사산물들이 Serratia marcescens ATCC 25419 Acetolactate Synthase의 생합성에 미치는 영향 (The Effects of Branched Chain Amino Acids and Small Metabolites on the Biosynthesis of Acetolactate Synthase in Serratia rnarcescens ATCC 25419)

  • 최병범;김승수
    • 한국미생물·생명공학회지
    • /
    • 제20권2호
    • /
    • pp.115-121
    • /
    • 1992
  • 최소 배지에 여러가지 아미노산들을 첨가하여 배양한 Serratia marcescens ATCC 25419 세포 추출물에서 acetolactate syhthase(ALS)의 비활성도를 0.5mM에서 40 증가시킨 반면 8mM에서 60, 20mM에서 90 감소시켰다. Valine은 효소의 비활성도를 2-4 mM에서 20-40 정도 증가시켰고 20mM의 높은 농도에서 10 정도 감소시켰다.

  • PDF

Modulation of Branched-Chain Amino Acid Metaolism by Exercise in Rats

  • Kim, Hyun-Sook
    • Journal of Nutrition and Health
    • /
    • 제27권9호
    • /
    • pp.892-900
    • /
    • 1994
  • A variety of important roles for branched-chain amino acids in metabolic regulation has been suggested. Branched-chain $\alpha$-keto acid dehydrogenase(BCKAD) complex is a rate limiting enzyme in branched-chain amino acid metabolism. The purpose of this study was to examine the effects of exercise on the activity and activity state of branched-chain $\alpha$-keto acid dehydrogenase in rat hert and liver thssues. Forty-eight Sprague-Dawley rats were assigned into three experimental groups : sedentary control, exercised, or exercised-rested. Submaximal exercise(running) for two hours significantly increased basal activity without a change in total activity in both tissues, with a concomitiant increase in activity state of the enzyme complex. At 10 min post-exercise, heart enzyme activity significantly decreased, though not to the control level, while liver enzyme activity remained unchanged. These data suggested that the exercise-induced increase in branched-chain $\alpha$-keto acid decarboxylation in rat tissues may not be the result of enzyme synthesis, but rather is due to increased activity of the BCKAD.

  • PDF

Transcriptome analysis of a transgenic Arabidopsis plant overexpressing CsBCAT7 reveals the relationship between CsBCAT7 and branched-chain amino acid catabolism

  • Kim, Young-Cheon;Lee, Dong Sook;Jung, Youjin;Choi, Eun Bin;An, Jungeun;Lee, Sanghyeob;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • 제48권4호
    • /
    • pp.228-235
    • /
    • 2021
  • The amino acids found in plants play important roles in protein biosynthesis, signaling processes, and stress responses, and as components in other biosynthesis pathways. Amino acid degradation helps maintain plant cells' energy states under certain carbon starvation conditions. Branched-chain amino acid transferases (BCATs) play an essential role in the metabolism of branched-chain amino acids (BCAAs) such as isoleucine, leucine and valine. In this paper, we performed genome-wide RNA-seq analysis using CsBCAT7-overexpressing Arabidopsis plants. We observed significant changes in genes related to flowering time and genes that are germination-responsive in transgenic plants. RNA-seq and RT-qPCR analyses revealed that the expression levels of some BCAA catabolic genes were upregulated in these same transgenic plants, and that this correlated with a delay in their senescence phenotype when the plants were placed in extended darkness conditions. These results suggest a connection between BCAT and the genes implicated in BCAA catabolism.

Regulation of Branched-Chain, and Sulfur-Containing Amino Acid Metabolism by Glutathione during Ultradian Metabolic Oscillation of Saccharomyces cerevisiae

  • Sohn Ho- Yong;Kum Eun-Joo;Kwon Gi-Seok;Jin Ingnyol;Kuriyama Hiroshi
    • Journal of Microbiology
    • /
    • 제43권4호
    • /
    • pp.375-380
    • /
    • 2005
  • Autonomous ultradian metabolic oscillation (T$\simeq$50 min) was detected in an aerobic chemostat culture of Saccharomyces cerevisiae. A pulse injection of GSH (a reduced form of glutathione) into the culture induced a perturbation in metabolic oscillation, with respiratory inhibition caused by $H_2S$ burst pro-duction. As the production of $H_2S$ in the culture was controlled by different amino acids, we attempted to characterize the effects of GSH on amino acid metabolism, particularly with regard to branched chain and sulfur-containing amino acids. During stable metabolic oscillation, concentrations of intra-cellular glutamate, aspartate, threonine, valine, leucine, isoleucine, and cysteine were observed to oscil-late with the same periods of dissolved $O_2$ oscillation, although the oscillation amplitudes and maximal phases were shown to differ. The methionine concentration was stably maintained at 0.05 mM. When GSH (100 $\mu$M) was injected into the culture, cellular levels of branched chain amino acids increased dramatically with continuous $H_2S$production, whereas the cysteine and methionine concentrations were noticeably reduced. These results indicate that GSH-dependent perturbation occurs as the result of the promotion of branched chain amino acid synthesis and an attenuation of cysteine and methionine synthesis, both of which activate the generation of $H_2S$. In a low sulfate medium containing 2.5 mM sulfate, the GSH injections did not result in perturbations of dissolved $O_2$ NAD(P)H redox oscillations without burst $H_2S$ production. This suggests that GSH-dependent perturbation is intimately linked with the metabolism of branched-chain amino acids and $H_2S$ generation, rather than with direct GSH-GSSG redox control.

Effect of Orally Administered Branched-chain Amino Acids on Protein Synthesis and Degradation in Rat Skeletal Muscle

  • Yoshizawa, Fumiaki;Nagasawa, Takashi;Sugahara, Kunio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권1호
    • /
    • pp.133-140
    • /
    • 2005
  • Although amino acids are substrates for the synthesis of proteins and nitrogen-containing compounds, it has become more and more clear over the years that these nutrients are also extremely important as regulators of body protein turnover. The branched-chain amino acids (BCAAs) together or simply leucine alone stimulate protein synthesis and inhibit protein breakdown in skeletal muscle. However, it was only recently that the mechanism(s) involved in the regulation of protein turnover by BCAAs has begun to be defined. The acceleration of protein synthesis by these amino acids seems to occur at the level of peptide chain initiation. Oral administration of leucine to food-deprived rats enhances muscle protein synthesis, in part, through activation of the mRNA binding step of translation initiation. Despite our knowledge of the induction of protein synthesis by BCAAs, there are few studies on the suppression of protein degradation. The recent findings that oral administration of leucine rapidly reduced $N^{\tau}$-methylhistidine (3-methylhistidine; MeHis) release from isolated muscle, an index of myofibrillar protein degradation, indicate that leucine suppresses myofiblilar protein degradation. The details of the molecular mechanism by which leucine inhibits proteolysis is just beginning to be elucidated. The purpose of this report was to review the current understanding of how BCAAs act as regulators of protein turnover.

간질(Fasciola hepatica)의 Branched Chain 아미노산 Aminotransferase의 정제 및 성상 (Purification and Properties of Branched Chain Amino Acid Arminotransferase from Fasciola hepatica)

  • 이중호;이동욱이의성송철용
    • Parasites, Hosts and Diseases
    • /
    • 제21권1호
    • /
    • pp.49-57
    • /
    • 1983
  • The distribution and Properties of branched chain amino acid aminotransferase (EC 2.6. 1.42) was investigated in adult Fasciola hepatica. Fascicla hepatica was fractionated by differential centrifugation into nuclear, mitochondrial and cytosolic fractions. The activity of branched chain amino acid aminotransferase was measured by the method of Ichihara and Koyama (1966) . Isozyme patterns of this enzyule was also examined by DEAE-cellulose column chromatography. The results obtained were as follows; 1. The activity in homogenate was found to be 12.69 units/g wet tissue. The activity of this enzyme was relatively high compared with those in rat tissues. 2. The distribution of branched chain amino acid aminotransferase in the subcellular organelles showed that 87.8% of the activity was in cytosolic, 10.9% in mitochondrial and 1.3% was in nuclear fraction. 3. Cytosolic fraction of Fasciola hepatica contained Enzyme I, but not Enzyme II and III, of branched chain amino acid aminotransferase. Ensyme I was eluted by 50mM phosphate buffier from DEAE-cellulose column and catalyzed the transamination of all three branched chain amino acids. 4. The Enzyme I was purified about 22-folds increase in specific activity after chromatography on DEAE-cellulose. 5. The best substrate among three amino acids (leucine, isoleucine and valise) was L-isoleucine. 6. The optimal temperature of Enzyme I was $45^{\circ}C$ and the optimal pH was 8.2. 7. The Km value for leucine of Enzyme I was 4.17 mM. 8. The Km values for a-ketoglutarate and pyridoxal phosphate of Enzyme I were 0.41mM and $4.76{\times}10^{-3}{\;}mM$, respectively.

  • PDF

단풍당뇨증의 식이요법과 급성대상부전의 치료 (Maple Syrup Urine Disease : Longterm Diet Therapy and Treatment of Acute Metabolic Decompensation)

  • 이홍진;배은주;박원일;이경자
    • 대한유전성대사질환학회지
    • /
    • 제3권1호
    • /
    • pp.4-14
    • /
    • 2003
  • Maple syrup urine disease or branched chain ketoacidurias caused by a deficiency in activity of the branched-chain ${\alpha}$-keto acid dehydrogenase(BCKD) complex. This metabolic block results in the accumulation of the branched-chain amino acids(BCAAs) leucine, isoleucine and valine, and the corresponding branched chain ${\alpha}$-keto acids (BCKAs). Based on the clinical presentation and biochemical responses to thiamine administration, MSUD patients can be divided into five phenotypes : classic, intermediate, intermittent, thiamine responsive and dihydrolipoyl dehydrogenase(E3)-deficient. Classic MSUD has a neonatal onset of encephalopathy, and is the most severe ad most common form. Variant forms of MSUD generally have the initial symptoms by 2 years of age. The majority of untreated classic patients die within the early months of life from recurrent metabolic crisis and neurologic deterioration. Treatment involves both longterm dietary management and aggressive intervention during acute metabolic decompensation. We report here our experience of longterm diet therapy and treatment of acute metabolic decompensation of a case of classic MSUD.

  • PDF

단백질 섭취 수준에 따른 고양이의 혈액 및 조직의 유리 아미노산 농도의 변화 (Changes in Blood and Tissue Free Amino Acid Concentrations in Cats Adapted to Low-and High-protein Diets)

  • Park, Tae Sun
    • Journal of Nutrition and Health
    • /
    • 제28권10호
    • /
    • pp.976-985
    • /
    • 1995
  • Changes in free amino acid concentrations is blood and various tissues were evaluated in cats adapted to the low-protein diet(20% protein, LPD) or the high-protein diet(60% protein, HPD) for 5 weeks. Cumulative body weigth gain for the 5 week period was 463$\pm$43g, and -128$\pm$40g for cats fed HPD and LPD, respectively. Feeding HPD significantly increased the size of liver and kidney. Cats adapted to HPD for 5 weeks have significantly elevated plasma concrntrations of essential amino acids (branched-chain amino acides, threonine, trytophan, phenylalanine and methoionine), whereas plasma levels of non-essential amino acids(alanine, asparagine, glycine, glutamine and serine) were significantly reduced in animals adapted to HPD(p<0.01, or p<0.001) compared to the values for the cats fed LPD. Changes in free amino acid concentratioks in whole blood induced by the variations in dietary level of protein closely reflect the pattern seen in plasma. Amino acids such as branched-chain amino acids, proline and threonine were most difficult to maintain homeostasis and consistantly elevated in lever, kidney, skeletal muscle and brain, as well as in blood of cats adapted to HPD(p<0.01 or p<0.001). All of the free amino acids in jejunum, excluding taurine and ornithine, were significantly elevated in animals adapted to HPD, most probably due to the rapid absorption of large amount of amino acids across the epithelium of small intestine.

  • PDF

Lactiplantibacillus plantarum LM1001 Improves Digestibility of Branched-Chain Amino Acids in Whey Proteins and Promotes Myogenesis in C2C12 Myotubes

  • Youngjin Lee;Yoon Ju So;Woo-Hyun Jung;Tae-Rahk Kim;Minn Sohn;Yu-Jin Jeong;Jee-Young Imm
    • 한국축산식품학회지
    • /
    • 제44권4호
    • /
    • pp.951-965
    • /
    • 2024
  • Lactiplantibacillus plantarum is a valuable potential probiotic species with various proven health-beneficial effects. L. plantarum LM1001 strain was selected among ten strains of L. plantarum based on proteolytic activity on whey proteins. L. plantarum LM1001 produced higher concentrations of total free amino acids and branched-chain amino acids (Ile, Leu, and Val) than other L. plantarum strains. Treatment of C2C12 myotubes with whey protein culture supernatant (1%, 2% and 3%, v/v) using L. plantarum LM1001 significantly increased the expression of myogenic regulatory factors, such as Myf-5, MyoD, and myogenin, reflecting the promotion of myotubes formation (p<0.05). L. plantarum LM1001 displayed β-galactosidase activity but did not produce harmful β-glucuronidase. Thus, the intake of whey protein together with L. plantarum LM1001 has the potential to aid protein digestion and utilization.

캐놀라 식물체내에서 클로르설푸론의 약해 유발 요인 (Chlorsulfuron-induced Phytotoxicity in Canola(Brassica napus L.) Seedlings)

  • 김성문;허장현;한대성;윌리암 반덴본
    • 한국잡초학회지
    • /
    • 제17권2호
    • /
    • pp.199-206
    • /
    • 1997
  • Acetolactate synthase를 저해하는 sulfonylurea계 제초제 chlorsulfuron은 감수성 식물 체내에서 많은 생리, 생화학적 변화를 유도한다. 이 연구의 목적은 chlorsulfuron이 유발하는 독성이 감수성 식물체내에서 branched-chain 아미노산 생합성경로의 최종산물인 leucine, valine과 isoleucine의 결핍에 의한 것인지 혹은 branchedchain 아미노산 생합성 경로중 독성 대사산물의 축적에 의한 것인지를 결정하는 것이다. Chlorsulfuron에 처리된 캐놀라의 성장은 저해되었으며, 처리된 식물은 백화 현상, 잎말이 현상 그리고 안토시아닌 축적과 같은 약해증상을 보였다. Branched-chain 아미노산이 첨가된 영양배양액에서 생장하는 캐놀라에 chlorsulfuron을 처리하였을 경우 생장저해와 약해는 단지 부분적으로 완화되었다. 이와 같은 사실은 chlorsulfuron에 처리된 캐놀라의 약해는 branched-chain 아미노산의 결핍 이외에 또 다른 요인이 있음을 시사하는 것이다. 독성 대사산물로 알려진 2-ketobutyrate에 처리된 캐놀라 식물체내에서의 대사산물 변화와 chlorsulfuron에 처리된 캐놀라 식물체내에서의 대사산물 변화는 서로 다른 양상을 보였다. 본 연구에서 얻어진 결과들은 chlorsulfuron에 처리된 감수성 식물이 나타내는 독성은 부분적으로 branched-chain 아미노산의 결핍에 의한 것이라는 점을 시사한다.

  • PDF