• Title/Summary/Keyword: branch point

Search Result 406, Processing Time 0.026 seconds

Flow Analysis of POSRV Subsystem of Standard Korean Nuclear Reactor (한국 표준형 원전의 POSRV 하부 배관 유동해석)

  • Kwon, Soon-Bum;Kim, In-Goo;Ahn, Hyung-Joon;Lee, Dong-Eum;Baek, Seung-Cheol;Lee, Byeong-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1464-1471
    • /
    • 2003
  • In order to investigate the flows with shock wave in branch, 108$^{\circ}$ elbow and T-junction of the IRWST system of standard Korean nuclear reactor, detail time dependent behaviors of unsteady flow with shock wave, vortex and so on are obtained by numerical method using compressible three-dimensional Navier-Stokes equations. At first, the complex flow including the incident and reflected shock waves, vortex and expansion waves which are generated at the corner of T-junction is calculated by the commercial code of FLUENT6 and is compared with the experimental result to obtain the validation of numerical method. Then the flow fields in above mentioned units are analyzed by numerical method of [mite volume method. In numerical analysis, the distributions of flow properties with the moving of shock wave and the forces acting on the wall of each unit which can be used to calculate the size of supporting structure in future are calculated specially. It is found that the initial shock wave of normal type is re-established its type from an oblique one having the same strength of the initial shock wave at the 4 times hydraulic diameters of downstream from the branch point of each unit. Finally, it is turned out that the maximum force acting on the pipe wall becomes in order of the T-junction, 108$^{\circ}$ elbow and branch in magnitude, respectively.

Substantial Study on Constituent Elements of the Foot Taeyang Meridian Muscle in the Human Truncus

  • Park, Kyoung-Sik
    • The Journal of Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.15-27
    • /
    • 2009
  • Objective : This study was carried to identify the anatomical component of BMM (Foot Taeyang Meridian Muscle in the human truncus), and further to help the accurate application to real acupunctuation. Methods: The human truncus was stripped off in order to demonstrate muscles, nerves and other components, and to display the internal structure of the BMM, dividing into outer, middle, and inner parts. Results: The BMM in the human truncus is composed of muscles, nerves, ligaments etc. The internal composition of the BMM in the human truncus is as follows: 1. Muscle A. Outer layer: medial palpebral ligament, orbicularis oculi, frontalis, galea aponeurotica, occipitalis, trapezius, latissimus dorsi, thoracolumbar fascia, gluteus maximus. B. Middle layer: frontalis, semispinalis capitis, rhomboideus minor, serratus posterior superior, splenius cervicis, rhomboideus major, latissimus dorsi, serratus posterior inferior, levator ani. C. Inner layer: medial rectus, superior oblique, rectus capitis, spinalis, rotatores thoracis, longissimus, longissimus muscle tendon, longissimus muscle tendon, multifidus, rotatores lumbaris, lateral intertransversi, iliolumbaris, posterior sacroiliac ligament, iliocostalis, sacrotuberous ligament, sacrospinous ligament. 2. Nerve A. Outer layer: infratrochlear nerve, supraorbital n., supratrochlear n., temporal branch of facial n., auriculotemporal n., branch of greater occipital n., 3rd occipital n., dorsal ramus of 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th thoracic n., dorsal ramus of 1st, 2nd, 3rd, 4th, 5th lumbar n., dorsal ramus of 1st, 2nd, 3rd, 4th, 5th sacral n. B. Middle layer: accessory nerve, anicoccygeal n. C. Inner layer: branch of ophthalmic nerve, trochlear n., greater occipital n., coccygeal n., Conclusions : This study shows that BMM is composed of the muscle and the related nerves and there are some differences from already established studies from the viewpoint of constituent elements of BMM at the truncus, and also in aspect of substantial assay method. In human anatomy, there are some conceptional differences between terms (that is, nerves which control muscles of BMM and those which pass near by BMM).

  • PDF

Sensitivity analysis of the plastic hinge region in the wall pier of reinforced concrete bridges

  • Babaei, Ali;Mortezaei, Alireza;Salehian, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.675-687
    • /
    • 2019
  • As the bridges are an integral part of the transportation network, their function as one of the most important vital arteries during an earthquake is fundamental. In a design point of view, the bridges piers, and in particular the wall piers, are considered as effective structural elements in the seismic response of bridge structures due to their cantilever performance. Owing to reduced seismic load during design procedure, the response of these structural components should be ductile. This ductile behavior has a direct and decisive correlation to the development of plastic hinge region at the base of the wall pier. Several international seismic design codes and guidelines have suggested special detailing to assure ductile response in this region. In this paper, the parameters which affect the length of plastic hinge region in the reinforced concrete bridge with wall piers were examined and the sensitivity of these parameters was evaluated on the length of the plastic hinge region. Sensitivity analysis was accomplished by independently variable parameters with one standard deviation away from their means. For this aim, the Monte Carlo simulation, tornado diagram analysis, and first order second moment method were used to determine the uncertainties associated with analysis parameters. The results showed that, among the considered design variables, the aspect ratio of the pier wall (length to width ratio) and axial load level were the most important design parameters in the plastic hinge region, while the yield strength of transverse reinforcements had the least effect on determining the length of this region.

Fabrication of Optical Network Monitoring Systems for Ship Using Combinations of Chained Branches Method and Dark Fiber Method (Chained Branches와 Dark Fiber 병합 방식을 이용한 선박용 광 네트워크 감시 시스템 제작)

  • Lee, Seong-Real;Kwak, Jae-Min;Ryu, Kwang-Su;Hwang, Eui-Chang;Hwang, Nam-Suk
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.278-286
    • /
    • 2012
  • Hardware and software of optical network monitoring system for optical network installed in ship for providing massive information are designed and fabricated. And, we investigated whether the fabricated system will accurately monitoring three events of optical cable extension, macrobanding and ferrule dust, which are related with special situation of ship, or not through the experiment. We used the combined method of chained branch and dark fiber for designing and fabricating hardware of optical network monitoring system for optimal corresponding with network configuration in ship. And, we confirmed that the proposed system excellently trace within 5 m range of event point in all three cases by investigating each event experiments.

Structure and Bonding of Ni(C6H4-nFn)(CO)2 (C6H4=benzyne, n=1-4) Complexes (Ni(C6H4-nFn)(CO)2 (C6H4=benzyne, n=1-4) 착물의 구조 및 화학결합)

  • Ghiasi, Reza;Hashemian, Saeedeh;Irajee, Oranoos
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.183-188
    • /
    • 2011
  • The electronic structure and properties of Ni$(C_6H_{4-n}F_n)(CO)_2$ ($C_6H_4$=benzyne, n=1-4) complexes have been investigated using hybrid density functional B3LYP theory. Both aromatic natures and nucleus independent chemical shift (NICS) of the benzyne rings have been analyzed. Among mono-, di-, and tri-fluorinated complexes, 3-F, 3,6-F, and 4-H are the most stable isomers, respectively. NICS values calculated at the several points above the ring centers are consistent with those based on the relative energies of the complexes. The atoms in molecules (AIM) analysis indicates that Ni-C bond distance is well correlated with the electron density of a ring critical point (${\rho}_{rcp}$) in all species.

Hot and average fuel sub-channel thermal hydraulic study in a generation III+ IPWR based on neutronic simulation

  • Gholamalishahi, Ramin;Vanaie, Hamidreza;Heidari, Ebrahim;Gheisari, Rouhollah
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1769-1785
    • /
    • 2021
  • The Integral Pressurized Water Reactors (IPWRs) as the innovative advanced and generation-III + reactors are under study and developments in a lot of countries. This paper is aimed at the thermal hydraulic study of the hot and average fuel sub-channel in a Generation III + IPWR by loose external coupling to the neutronic simulation. The power produced in fuel pins is calculated by the neutronic simulation via MCNPX2.6 then fuel and coolant temperature changes along fuel sub-channels evaluated by computational fluid dynamic thermal hydraulic calculation through an iterative coupling. The relative power densities along the fuel pin in hot and average fuel sub-channel are calculated in sixteen equal divisions. The highest centerline temperature of the hottest and the average fuel pin are calculated as 633 K (359.85 ℃) and 596 K (322.85 ℃), respectively. The coolant enters the sub-channel with a temperature of 557.15 K (284 ℃) and leaves the hot sub-channel and the average sub-channel with a temperature of 596 K (322.85 ℃) and 579 K (305.85 ℃), respectively. It is shown that the spacer grids result in the enhancement of turbulence kinetic energy, convection heat transfer coefficient along the fuel sub-channels so that there is an increase in heat transfer coefficient about 40%. The local fuel pin temperature reduction in the place and downstream the space grids due to heat transfer coefficient enhancement is depicted via a graph through six iterations of neutronic and thermal hydraulic coupling calculations. Working in a low fuel temperature and keeping a significant gap below the melting point of fuel, make the IPWR as a safe type of generation -III + nuclear reactor.

Experimental study on the behavior of reinforced concrete beam boosted by a post-tensioned concrete layer

  • Mirzaee, Alireza;Torabi, Ashkan;Totonchi, Arash
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.549-557
    • /
    • 2021
  • Nowadays, strengthening of buildings is an inclusive and effective field in civil engineering that is not only applicable to the buildings but also it can be developed for the bridges. Rehabilitation and strengthening of structures are highly recommended for the existing structures due to the alter in codes and provisions as well as buildings' use change. Extensive surveys have been conducted in this field in the world that propose wide variety of methods for strengthening of structures. In recent years, more specific researches have been carried out that present novel materials for rehabilitation beside proposing methods and performing techniques. In the current study, a novel technique for developing the bending capacity of reinforced concrete beams to enhance their performance as well as rehabilitating and reforming the performance of reinforced concrete beams with nonstandard lap splices, has been proposed. In this method, a post-tensioned concrete layer is added to the side face of the concrete beams built in 1:1 scale. Results reveals that addition of the post-tensioned layer enhances the beams' performance and covers their weaknesses. In this method, 18 reinforced concrete beams were prepared for the bending test which were subjected to the four-point pushover test after they were reinforced. The testing process ended when the samples reached complete failure status. Results show that the performance and flexural capacity of reinforced beams without lap splice is improved 22.7% compared to the samples without the post-tensioned layer, while it is enhanced up to at least 80% compared to the reinforced beams with nonstandard lap splice. Furthermore, the location of plastic hinges formation was transformed from the beam's mid-span to the 1/3 of span's end and the beam's cracking pattern was significantly improved.

Numerical investigation on the bifurcation of natural convection in a horizontal concentric annulus (수평동심환상공간내 자연대류의 다중해에 관한 수치적 연구)

  • Jeong, Jae-Dong;Kim, Chan-Jung;Lee, Jun-Sik;Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.252-263
    • /
    • 1997
  • Steady-state two-dimensional natural convective heat transfer in horizontal cylindrical annuli was studied by solving the governing equations based on the primitive variables. Emphasis was put on the occurrence of the multiple solutions at a given set of parameter values, and on the determination of the bifurcation points at which those multiple solutions begin to branch out. The multicellular flow pattern from the results of melting process in an isothermally heated horizontal cylinder for high Rayleigh numbers, was used as initial guesses for the field variables. This was succeeded in new bifurcation point to tetracellular solutions for an identical set of parameter variables of previous works. The close examination of flow pattern transition around bifurcation point was also conducted. It was found that the mechanisms of flow transition are different depending on the critical Rayleigh number of bifurcation point.

A Parameter Selection Method for Multi-Element Resonant Converters with a Resonant Zero Point

  • Wang, Yifeng;Yang, Liang;Li, Guodong;Tu, Shijie
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.332-342
    • /
    • 2018
  • This paper proposes a parameter design method for multi-element resonant converters (MERCs) with a unique resonant zero point (RZP). This method is mainly composed of four steps. These steps include program filtration, loss comparison, 3D figure fine-tuning and priority compromise. It features easy implementation, effectiveness and universal applicability for almost all of the existing RZP-MERCs. Meanwhile, other design methods are always exclusive for a specific topology. In addition, a novel dual-CTL converter is also proposed here. It belongs to the RZP-MERC family and is designed in detail to explain the process of parameter selection. The performance of the proposed method is verified experimentally on a 500W prototype. The obtained results indicate that with the selected parameters, an extensive dc voltage gain is obtained. It also possesses over-current protection and minimal switching loss. The designed converter achieves high efficiencies among wide load ranges, and the peak efficiency reaches 96.9%.

Relationship between Bacterial Regrowth and Free chlorine Residuals in Water Distribution System

  • Lee, Yoon-Jin;Yoon, Tae-Ho;Jun, Byong-Ho;Oh, Kyoung-Doo;Nam, Sang-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.136-139
    • /
    • 2003
  • This study is to observe the occurrence of heterotrophic bacteria in terms of free chlorine residuals in two different water distribution system which belongs to both K and Y water treatment plant of S city of Korea. The data analyzing in distribution systems (DS) shows that the free chlorine residuals decrease from 0.10 to 0.56 mgmg/L for K, and 0.51 to 0.78 mg/L for Y. The decay of free chlorine is clearly higher in both March and August than those of in January. The HPC in DS are ranged from 0 to 40 CFU/mL for K, 0 to 270 CFU/mL for Y, on R2A medium. In particular, its level is relatively high at consumers ground storage tanks, taps and point-of-end area of Y. The predominant genera is studied in distribution systems are Acinetobacter, Sphingomonas (branch of Pseudomonas), Micrococcus, Bacillus, Staphylococcus. The diversity of heterotrophic bacteria increase in the end-point area. Most of them are either encapsulated cells or cocci of gram-positve. In conclusion, the point-of-end area in distribution systems shows the longer flow distance from water treatment plants, the greater diversity and higher level of heterotrophic bacteria due to the significant decay of free chlorine residuals.

  • PDF