• Title/Summary/Keyword: brake disc

Search Result 206, Processing Time 0.03 seconds

A Study on the Temperature Distribution of Disc Brake System Considering the Material Property of the Disc Brake Piston (디스크 브레이크 피스톤 재질을 고려한 브레이크 시스템 온도 분포에 관한 연구)

  • Kim, Soo-Tae;Kim, Jin-Han;Kim, Joo-Shin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.45-51
    • /
    • 2005
  • Braking performance of a vehicle can be significantly affected by the temperature increment in the brake system. Therefore, the important problem in brake system is to reduce the thermal effect by friction heat. Recently, many studies have been performed and good results have been reported on the prediction of the brake disk temperature. However, the study on the pad, piston and brake fluid temperature is rarely found despite of its importance. In this study, the temperature distribution of the disc brake system is studied according to the material properties of brake piston. Vehicle deceleration, weight distribution by deceleration, disc-pad heat division and the cooling of brake components are considered in the analysis of heat transfer. Unsteady state temperature distributions are analyzed by using the finite element method and the numerical results are compared with the experimental data.

APPLICATION OF GIANT MAGNETOSTRICTIVE MATERIAL TO DISC BRAKE ACTUATOR

  • OGAWA, Yutaka;MURATA, Yukio;KAWASE, Kazuo;WAKIWAKA, Hiroyuki;MIZUNO, Tsutomu;YAMADA, Hajime
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.560-563
    • /
    • 1998
  • For the next generation railway brake system, a disc brake which can be operated directly and electrically is strongly expected. This paper deals with newly developed disc brake actuator using giant magnetostrictive materials(GMM) which can be integrated with disc brake. Regarding the brake system performance, a better delay time was also attained which can be integrated with disc brake. Regarding the brake system performance, a better delay time was also attained which will contribute to shorten a stopping distance.

  • PDF

Moan Noise Analysis of Rear Disc Brake (후륜 디스크 브레이크 Moan 노이즈 해석)

  • 박진국;김찬중;이봉현;정호일;문창룡;김정락;이충렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.607-612
    • /
    • 2004
  • Disc brake noise continues to be a major concern throughout the automotive industry despite efforts to reduce its occurrence. Eliminating vibrations during braking is an important task for both vehicle passenger comfort and reducing the overall environmental noise levels. There are several classes of disc brake noise, the major ones being squeal, judder, groan, and moan. In this study, analytical model for moan noise of rear disk brake is investigated. Modeling of the disc brake assembly to take account of the effect of different geometrical and contact parameters is studied through the use of multi-body model. The contact stiffness of the caliper and torque member plays an important role in controlling brake vibration. Therefore, a suitable material pair at the caliper/body contact has been made. An ADAMS model of a rear disc brake system was integrated with a flexible suspension trailng arm from MSC/NASTRAN. A fully non-linear dynamic simulatin of brake system behavior, containing rigid and flexible bodies, was performed for a Prescribed set of operating conditions. Simulation results were validated using data from vehicle experimental testing.

  • PDF

Coupled temperature-displacement modeling to study the thermo-elastic instability in disc brakes

  • Ramkumar, E.;Mayuram, M.M.
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.165-182
    • /
    • 2012
  • Macroscopic hot spots formed due to the large thermal gradients at the surface of the disc brake rotor, make the rotor to fail or wear out early. Thermo-elastic deformation results in contact concentration, leading to the non uniform distribution of temperature making the disc susceptible to hot spot formation. The formation of one hot spot event will predispose the system to future hot spotting at the same location. This leads to the complete thermo-elastic instability in the disc brakes; multitude parameters are responsible for the thermo elastic instability. The predominant factor is the sliding velocity and above a certain sliding velocity the instability of the brake system occurs and hot spots is formed in the surface of the disc brake. Commercial finite element package ABAQUS(R) is used to find the temperature distribution and the result is validated using Rowson's analytical model. A coupled analysis methodology is evolved for the automotive disc brake from the transient thermo-elastic contact analysis. Temperature variation is studied under different sliding speeds within the operation range.

Thermal Fluid Flow and Deformation Analysis of Medium Commercial Vehicle Ventilated Brake Disc in Braking (중형 상용차 통풍형 브레이크 디스크의 제동 시 열 유동 및 변형 해석)

  • Kang, Chaeuk;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.63-69
    • /
    • 2014
  • Domestic automobile companies have adopted drum type brake system for commercial vehicles. However recently those companies have been applying disc-brake system to solve vehicle control-instability and inefficient heat discharge performance of conventional drum brake system for a medium commercial vehicle. Because the kinetic energy of a running commercial vehicle is relatively high, the brake system should discharge lots of heat energy while braking. A ventilated type brake disc has been used to increase heat discharge performance of a brake system. The vent structure of a disc highly affects cooling efficiency. This paper compares thermal characteristics of three types of vent structure in JASO C421 braking condition. It is found that the slant bend type disc has the lowest temperature and thermal stress distributions in the braking condition.

A Study on Braking Performance of Break Disc (브레이크 디스크의 제동 성능에 관한 연구)

  • Ryu, Mi-Ra;Bae, Hui-Eun;Kim, Hyun-Su;Lee, Dae-Hee;Lee, Seong-Beom;Park, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.13-20
    • /
    • 2013
  • The present research aims to develop the aluminum disc brake replacing the existing cast iron disc brake. Material such as aluminum using FEM numerical analysis in order to improve the characteristics of each element, we analyze the performance characteristics and braking time you try to change. We try to lay the foundation for the development of an aluminum disc by investigating performance characteristics of the existing cast iron disc brake and comparing them with those of the aluminum disc. This involves FEM dynamics analysis for disc materials and experimental tests using the brake dynamometer. From this study, the results of 7075 aluminum braking performance can be seen that the best.

A Study on Temperature Field and Contact Pressure in Ventilated Disc-Pad Brake by 3D Thermo-mechanical Coupling Model (3차원 열-기계 커플링 모델에 의한 벤틸레이티드 디스크-패드 브레이크의 온도 분포와 접촉 압력에 관한 연구)

  • Hwang, Pyung;Seo, Hee-Chang;Wu, Xuan
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.421-426
    • /
    • 2009
  • The brake system is important part of automobile safety system. The disc brake system is divided two parts: the rotating axisymmetrical disc and the stationary pads. During braking, the kinetic energy and potential energy of moving vehicle were converted into the thermal energy through frictional heat between the brake disc and the pads. The frictional heat, which is generated on the interface of the disc and pads, can cause high temperature during the braking process. The object of present work is to determine temperature and thermal stress, to compare to simulation results and experimental results in the disc by partial 3D model of ventilated disc brake with appropriate boundary conditions. In the simulation process, the mechanical loads were applied to the thermo-mechanical coupling analysis in order to simulate the process of heat produced by friction.

The Optimal Design of Suspension Module for Brake Judder Reduction (브레이크 저더 저감을 위한 전달계 최적 설계)

  • Kim, Jung-Hoon;Yoo, Dong-Ho;Kang, Yeon-June
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1213-1218
    • /
    • 2007
  • The brake judder comes from non-uniformities in the tire/wheel assembly caused by mechanical effects such as a brake torque variation (BTV). A disc thickness variation (DTV) related with the kinematic behavior of the disc was investigated a main source of BTV. In this study, a dynamic model with brake corner assembly of full vehicle using MSC.ADAMS was correlated by experiment of judder phenomenon. Judder was generated and correlated systematically by judder experiment in chassis and brake dynamometer from variation in the thickness of the disc. Also it has been found a judder transfer path and variation of the braking pressure. Through analysis of transfer function and movement of subsystem caused by BTV generation, design parameters have been found. Based on the results obtained from parameter study of suspension module, the effective design process and developed model with brake corner assembly was suggested for vibration reduction of steering wheel caused by the judder phenomenon.

  • PDF

A study on the development of a Fe-based brake lining for Passenger car (객차용 Fe계 브레이크 라이닝 개발)

  • 최경진;이동형
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.258-265
    • /
    • 2000
  • This study is to develop a Fe-based disc brake tinning with sponge structure for passenger car of 150km/h train and to concept design with 3 groove type for brake disc reducing hot hair-crack and certainly friction coeifficient. The developping brake linning would be to presumption of thermal stress Max.5.53k9/m0 of the 3 groove type. and It is stable friction coeifficient and wear rate on the Full Scale Brake dynamometer. So 3 groove type must be reduced to hot stress between Brake disc and Linning and Friction temperature is reduced about 20$^{\circ}C$

  • PDF

Tribological Characteristics of Ceramic Coated High Power Brake Discs (세라믹 코팅 고에너지 제동 디스크의 트라이볼로지적 특성)

  • 이희성;강부병
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.305-311
    • /
    • 2002
  • Three different kinds of brake discs including two coated brake discs and one steel disc were tested under the same experimental conditions on a reduced scale braking test bench. A braking test bench was specially designed to analyse thermo-mechanical and frictional behaviors of two types of brake with different sizes in stop and hold braking modes. Plasma spray coating technique was also used to coat the discs with ceramic powder. During the test four commercial brake pads were coupled with discs. Ceramic coated discs showed good stability in friction coefficient at high speed and high energy braking conditions. But they caused large wear loss of pad mass compared with the steel disc. It was shown that thermal barrier effect in ceramic coated discs adjusted the thermal partition between pad and disc. For a steel disc. it showed fluctuating friction coefficient at high speed but small wear loss of pad mass compared with ceramic coated discs.