• Title/Summary/Keyword: brain-based learning

Search Result 206, Processing Time 0.03 seconds

Effect of Treatment with Docosahexaenoic Acid into N-3 Fatty Acid Adequate Diet on Learning Related Brain Function in Rat (N-3계 지방산 적절 함량 식이의 docosahexaenoic acid 첨가가 기억력 관련 뇌 기능에 미치는 영향)

  • Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.917-922
    • /
    • 2009
  • The effect of adding docosahexaenoic acid into an n-3 fatty acid adequate diet on the improvement of learning related brain function was investigated. On the second day after conception, Sprague Dawley strain dams were subjected to a diet containing either n-3 fatty acid adequate (Adq, 3.4% linolenic acid) or n-3 fatty acid adequate+docosahexaenoic acid (Adq+DHA, 3.31%linolenic acid plus 9.65% DHA). After weaning, male pups were fed on the same diet of their respective dams until adulthood. Motor activity and Morris water maze tests were measured at 10 weeks. In the motor activity test, there were no statistically significant differences in moving time and moving distance between the Adq and Adq+DHA diet groups. The n-3 fatty acid adequate with DHA (Adq+DHA) group tended to show a shorter escape latency, swimming time and swimming distance compared to the n-3 fatty acid adequate group (Adq), but the differences were not statistically significant. There was no difference in resting time, but the Adq+DHA group showed a higher swimming speed compared to the Adq group. In memory retention trials, the numbers of crossing of the platform position (region A), in which the hidden platform was placed, were significantly greater than those of other regions for both Adq and Adq+DHA groups. Based on these results, adding DHA into the n-3 fatty acid adequate diet from gestation to adulthood tended to induce better spatial learning performance in Sprague Dawley rats as assessed by the Morris water maze test, although the difference was not significant.

Automatically Diagnosing Skull Fractures Using an Object Detection Method and Deep Learning Algorithm in Plain Radiography Images

  • Tae Seok, Jeong;Gi Taek, Yee; Kwang Gi, Kim;Young Jae, Kim;Sang Gu, Lee;Woo Kyung, Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Objective : Deep learning is a machine learning approach based on artificial neural network training, and object detection algorithm using deep learning is used as the most powerful tool in image analysis. We analyzed and evaluated the diagnostic performance of a deep learning algorithm to identify skull fractures in plain radiographic images and investigated its clinical applicability. Methods : A total of 2026 plain radiographic images of the skull (fracture, 991; normal, 1035) were obtained from 741 patients. The RetinaNet architecture was used as a deep learning model. Precision, recall, and average precision were measured to evaluate the deep learning algorithm's diagnostic performance. Results : In ResNet-152, the average precision for intersection over union (IOU) 0.1, 0.3, and 0.5, were 0.7240, 0.6698, and 0.3687, respectively. When the intersection over union (IOU) and confidence threshold were 0.1, the precision was 0.7292, and the recall was 0.7650. When the IOU threshold was 0.1, and the confidence threshold was 0.6, the true and false rates were 82.9% and 17.1%, respectively. There were significant differences in the true/false and false-positive/false-negative ratios between the anterior-posterior, towne, and both lateral views (p=0.032 and p=0.003). Objects detected in false positives had vascular grooves and suture lines. In false negatives, the detection performance of the diastatic fractures, fractures crossing the suture line, and fractures around the vascular grooves and orbit was poor. Conclusion : The object detection algorithm applied with deep learning is expected to be a valuable tool in diagnosing skull fractures.

A Study on the Basic Education Program of Fashion Drawing (패션 드로잉을 위한 기초교육에 관한 연구)

  • Chang, Dong-Rim
    • Journal of Fashion Business
    • /
    • v.1 no.1
    • /
    • pp.84-98
    • /
    • 1997
  • This study is to develop a fashion drawing education program which is based on the theory of 'Split-brain' by Roger W. Sperry and 'Drawing on the Right Side of the Brain' by Betty Edwards. Students in Fashion Design start their training by developing a foundation in drawing and studing the tools, materials and methods of the Industry. Ideas are then developed on paper, later translated into three-dimensional shapes and finally into finished garments. Fashion drawing and design techniques train the hand and eye to all the nuances of fashion design and illustration. Fashion drawing course deals with the sketching of fashion models for the purpose of understanding the model figure, basic anatomy, movement and figure attitudes. Having mastered the basic skills, students take advanced drawing course which is developing awareness of design, needs, of fashion market' using various media for the purpose of developing a designer's sketch, with emphasis on the drawing and designs. Featured aspects of this study include the following; 1. Drawing the negative space; basic visual concepts 2. Contour drawing; constructs, visual measurement, movement 3. Model drawing; the classical method, proportion, symmetry. The primary aim of this study is to develop a sensitive, animated line based on observed form. It is important to let the students Imagine that they are actually touching the model, for in this way they can benefit from simulating the child's learning process. Instead of actually touching the model they are using their eyes as an extension of their sense of touch.

  • PDF

Proper Noun Embedding Model for the Korean Dependency Parsing

  • Nam, Gyu-Hyeon;Lee, Hyun-Young;Kang, Seung-Shik
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2022
  • Dependency parsing is a decision problem of the syntactic relation between words in a sentence. Recently, deep learning models are used for dependency parsing based on the word representations in a continuous vector space. However, it causes a mislabeled tagging problem for the proper nouns that rarely appear in the training corpus because it is difficult to express out-of-vocabulary (OOV) words in a continuous vector space. To solve the OOV problem in dependency parsing, we explored the proper noun embedding method according to the embedding unit. Before representing words in a continuous vector space, we replace the proper nouns with a special token and train them for the contextual features by using the multi-layer bidirectional LSTM. Two models of the syllable-based and morpheme-based unit are proposed for proper noun embedding and the performance of the dependency parsing is more improved in the ensemble model than each syllable and morpheme embedding model. The experimental results showed that our ensemble model improved 1.69%p in UAS and 2.17%p in LAS than the same arc-eager approach-based Malt parser.

EEG-based Customized Driving Control Model Design (뇌파를 이용한 맞춤형 주행 제어 모델 설계)

  • Jin-Hee Lee;Jaehyeong Park;Je-Seok Kim;Soon, Kwon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.81-87
    • /
    • 2023
  • With the development of BCI devices, it is now possible to use EEG control technology to move the robot's arms or legs to help with daily life. In this paper, we propose a customized vehicle control model based on BCI. This is a model that collects BCI-based driver EEG signals, determines information according to EEG signal analysis, and then controls the direction of the vehicle based on the determinated information through EEG signal analysis. In this case, in the process of analyzing noisy EEG signals, controlling direction is supplemented by using a camera-based eye tracking method to increase the accuracy of recognized direction . By synthesizing the EEG signal that recognized the direction to be controlled and the result of eye tracking, the vehicle was controlled in five directions: left turn, right turn, forward, backward, and stop. In experimental result, the accuracy of direction recognition of our proposed model is about 75% or higher.

EEG based Cognitive Load Measurement for e-learning Application (이러닝 적용을 위한 뇌파기반 인지부하 측정)

  • Kim, Jun;Song, Ki-Sang
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.2
    • /
    • pp.125-154
    • /
    • 2009
  • This paper describes the possibility of human physiological data, especially brain-wave activity, to detect cognitive overload, a phenomenon that may occur while learner uses an e-learning system. If it is found that cognitive overload to be detectable, providing appropriate feedback to learners may be possible. To illustrate the possibility, while engaging in cognitive activities, cognitive load levels were measured by EEG (electroencephalogram) to seek detection of cognitive overload. The task given to learner was a computerized listening and recall test designed to measure working memory capacity, and the test had four progressively increasing degrees of difficulty. Eight male, right-handed, university students were asked to answer 4 sets of tests and each test took from 61 seconds to 198 seconds. A correction ratio was then calculated and EEG results analyzed. The correction ratio of listening and recall tests were 84.5%, 90.6%, 62.5% and 56.3% respectively, and the degree of difficulty had statistical significance. The data highlighted learner cognitive overload on test level of 3 and 4, the higher level tests. Second, the SEF-95% value was greater on test3 and 4 than on tests 1 and 2 indicating that tests 3 and 4 imposed greater cognitive load on participants. Third, the relative power of EEG gamma wave rapidly increased on the 3rd and $4^{th}$ test, and signals from channel F3, F4, C4, F7, and F8 showed statistically significance. These five channels are surrounding the brain's Broca area, and from a brain mapping analysis it was found that F8, right-half of the brain area, was activated relative to the degree of difficulty. Lastly, cross relation analysis showed greater increasing in synchronization at test3 and $4^{th}$ at test1 and 2. From these findings, it is possible to measure brain cognitive load level and cognitive over load via brain activity, which may provide atimely feedback scheme for e-learning systems.

  • PDF

Deep Learning-Based Assessment of Functional Liver Capacity Using Gadoxetic Acid-Enhanced Hepatobiliary Phase MRI

  • Hyo Jung Park;Jee Seok Yoon;Seung Soo Lee;Heung-Il Suk;Bumwoo Park;Yu Sub Sung;Seung Baek Hong;Hwaseong Ryu
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.720-731
    • /
    • 2022
  • Objective: We aimed to develop and test a deep learning algorithm (DLA) for fully automated measurement of the volume and signal intensity (SI) of the liver and spleen using gadoxetic acid-enhanced hepatobiliary phase (HBP)-magnetic resonance imaging (MRI) and to evaluate the clinical utility of DLA-assisted assessment of functional liver capacity. Materials and Methods: The DLA was developed using HBP-MRI data from 1014 patients. Using an independent test dataset (110 internal and 90 external MRI data), the segmentation performance of the DLA was measured using the Dice similarity score (DSS), and the agreement between the DLA and the ground truth for the volume and SI measurements was assessed with a Bland-Altman 95% limit of agreement (LOA). In 276 separate patients (male:female, 191:85; mean age ± standard deviation, 40 ± 15 years) who underwent hepatic resection, we evaluated the correlations between various DLA-based MRI indices, including liver volume normalized by body surface area (LVBSA), liver-to-spleen SI ratio (LSSR), MRI parameter-adjusted LSSR (aLSSR), LSSR × LVBSA, and aLSSR × LVBSA, and the indocyanine green retention rate at 15 minutes (ICG-R15), and determined the diagnostic performance of the DLA-based MRI indices to detect ICG-R15 ≥ 20%. Results: In the test dataset, the mean DSS was 0.977 for liver segmentation and 0.946 for spleen segmentation. The Bland-Altman 95% LOAs were 0.08% ± 3.70% for the liver volume, 0.20% ± 7.89% for the spleen volume, -0.02% ± 1.28% for the liver SI, and -0.01% ± 1.70% for the spleen SI. Among DLA-based MRI indices, aLSSR × LVBSA showed the strongest correlation with ICG-R15 (r = -0.54, p < 0.001), with area under receiver operating characteristic curve of 0.932 (95% confidence interval, 0.895-0.959) to diagnose ICG-R15 ≥ 20%. Conclusion: Our DLA can accurately measure the volume and SI of the liver and spleen and may be useful for assessing functional liver capacity using gadoxetic acid-enhanced HBP-MRI.

Development of an On-line Consultant Training System for Consulting-Supervision (컨설팅장학을 위한 온라인 컨설턴트 교육 시스템 개발)

  • Hong, Gak-Pyo;Rha, MinJu;Jung, Jae-Hun;Kim, Mihye;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.7
    • /
    • pp.18-28
    • /
    • 2014
  • With the reformation of organization and function of local office of education in 2010, consulting-supervision is introduced to schools as a system for education reform to improve the quality of school education. However, a dedicated on-line portal system that can provide integrated management on the functionalities of consulting-supervision has not been implemented yet. To successfully operate consulting-supervision in schools, it is also needed to provide an on-line consultant education system, that can support teachers to train themselves as a supervision-consultant. In this paper, we introduce an on-line consultant training system that provides various learning activity tools for consultant training based on Learning Activity Management System(LAMS) and Action Learning. The system consists of Management stage, Analysis stage, Solution stage, and Action stage for the empowerment of consultants' expertises, and is named as MASA. Brain-writing, SWOT(Strengths, Weaknesses, Opportunities, and Threads) analysis, 5Whys, decision grid, PMI(Plus, Minus, Interesting), and black chart techniques were developed in MASA as learning activity tools for consultant training.

A Study on the Improving Method of Academic Effect based on Arduino sensors (아두이노 센서 기반 학업 효과 개선 방안 연구)

  • Bae, Youngchul;Hong, YouSik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.226-232
    • /
    • 2016
  • The research for the improvement in math and science scores is active by the brain exercises, stress reliefs, and emotion sensitized illuminations. This principle is based on the following facts that the most effective brain turns are supported with the circumstances not only when the brain wave should keep stability and comfort in science criticism, but also when minimized stress and comfortable illumination should be adjusted in solving math problem. In this paper, in order to effectively learn mathematics and science, the most optimized simulating tests in learning conditions are conducted by using a stress relief. However, depending on the users' tastes, the effectiveness on favorite music or colors therapy have no convergency but many differentiations. Therefore, in this paper, in order to solve this problem, the proposed optimal illumination and music therapy treatment using fuzzy inference method.

Subject Independent Classification of Implicit Intention Based on EEG Signals

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.12 no.3
    • /
    • pp.12-16
    • /
    • 2016
  • Brain computer interfaces (BCI) usually have focused on classifying the explicitly-expressed intentions of humans. In contrast, implicit intentions should be considered to develop more intelligent systems. However, classifying implicit intention is more difficult than explicit intentions, and the difficulty severely increases for subject independent classification. In this paper, we address the subject independent classification of implicit intention based on electroencephalography (EEG) signals. Among many machine learning models, we use the support vector machine (SVM) with radial basis kernel functions to classify the EEG signals. The Fisher scores are evaluated after extracting the gamma, beta, alpha and theta band powers of the EEG signals from thirty electrodes. Since a more discriminant feature has a larger Fisher score value, the band powers of the EEG signals are presented to SVM based on the Fisher score. By training the SVM with 1-out of-9 validation, the best classification accuracy is approximately 65% with gamma and theta components.