Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.7.917

Effect of Treatment with Docosahexaenoic Acid into N-3 Fatty Acid Adequate Diet on Learning Related Brain Function in Rat  

Lim, Sun-Young (Division of Marine Environment & Bioscience, Korea Maritime University)
Publication Information
Journal of Life Science / v.19, no.7, 2009 , pp. 917-922 More about this Journal
Abstract
The effect of adding docosahexaenoic acid into an n-3 fatty acid adequate diet on the improvement of learning related brain function was investigated. On the second day after conception, Sprague Dawley strain dams were subjected to a diet containing either n-3 fatty acid adequate (Adq, 3.4% linolenic acid) or n-3 fatty acid adequate+docosahexaenoic acid (Adq+DHA, 3.31%linolenic acid plus 9.65% DHA). After weaning, male pups were fed on the same diet of their respective dams until adulthood. Motor activity and Morris water maze tests were measured at 10 weeks. In the motor activity test, there were no statistically significant differences in moving time and moving distance between the Adq and Adq+DHA diet groups. The n-3 fatty acid adequate with DHA (Adq+DHA) group tended to show a shorter escape latency, swimming time and swimming distance compared to the n-3 fatty acid adequate group (Adq), but the differences were not statistically significant. There was no difference in resting time, but the Adq+DHA group showed a higher swimming speed compared to the Adq group. In memory retention trials, the numbers of crossing of the platform position (region A), in which the hidden platform was placed, were significantly greater than those of other regions for both Adq and Adq+DHA groups. Based on these results, adding DHA into the n-3 fatty acid adequate diet from gestation to adulthood tended to induce better spatial learning performance in Sprague Dawley rats as assessed by the Morris water maze test, although the difference was not significant.
Keywords
Brain function; docosahexaenoic acid; Morris water maze; n-3 fatty acid; spatial learning;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Stewart, C. A. and R. Morris. 1993. The water maze. pp. 107-122, In Sagal, A. (ed.), Behavioral Neuroscience: A Practical Approach, Vol. 1, Oxford University Press, New York
2 Su, H. M., M. C. Huang, N. M. R. Saad, P. W. Nathanielsz, and J. T. Brenna. 2001. Fetal baboons convert 18:3n-6 to 22:6n-3 in vivo: a stable isotope tracer study. J. Lipid Res. 42, 581-586
3 Uauy, R. D., D. G. Birch, E. E. Birch, J. E. Tyson, and D. R. Hoffman. 1990. Effect of dietary omega-3-fatty-acids on retinal function of very-low-birth-the-weight neonates. Ped. Res. 28, 485-492   DOI   ScienceOn
4 Valenzuela, A., R. Van Bernhardi, V. Valenzuela, G. Ramirez, R. Alarcon, J. Sanhueza, and S. Nieto. 2004. Supplementation of female rats with alpha- linolenic acid or docosahexaenoic acid leads to the same omega-6/ omega-3 LC-PUFA accretion in mother tissues and in fetal and newbron brains. Ann. Nutr. Metab. 48, 28-35   DOI   ScienceOn
5 Weisinger, H. S., A. J. Vingrys, B. V. Bui, and A. J. Sinclair. 1999. Effect of dietary n-3 deficiency and repletion in the guinea pig retina. Invest. Ophthalmol. Vis. Sci. 40, 327-338
6 Weisinger, H. S., J. A. Armitage, A. J. Sinclair, A. J. Vingrys, P. Burns, and R. S. Weisinger. 2001. Perinatal omega-3 fatty acid deficiency affects blood pressure later in life. Nature Med. 7, 258-259   DOI   ScienceOn
7 Weisinger, H. S., J. A. Armitage, B. G, Jeffrey, D. C. Mitchell, T. Moriguchi, A. J. Sinclair, R. S. Weisinger, and N. Salem. 2002. Retinal sensitivity loss in third-generation n-3 PUFA-deficient rats. Lipids 37, 759-765   DOI   ScienceOn
8 Willatts, P., J. S. Forsyth, M. K. DiModugno, S. Varma, and M. Colvin. 1998. Influence of long-chain polyunsaturated fatty acids on infant cognitive function. Lipids 33, 973-980   DOI   ScienceOn
9 Moriguchi, T., R. Greiner, and N. Salem. 2000. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J. Neurochem. 75, 2563-2573   DOI   ScienceOn
10 Moriguchi, T. and N. Salem. 2003. Recovery of brain docosahexaenoate leads to recovery of spatial task performance. J. Neurochem. 87, 297-309   DOI   ScienceOn
11 Morris, R. 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47-60.   DOI   ScienceOn
12 Niu, S. L., D. C. Mitchell, S. Y. Lim, Z. M. Wen, H. Y. Kim, N. Salem, and B. J. Litman. 2004. Reduced G proteincoupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. J. Biol. Chem. 279, 31098-31104   DOI   ScienceOn
13 Reeves, P. G., F. H. Neilsen, and G. C. Fahey. 1993. Committee report on the AIN-93 purified rodent diet. J. Nutr. 123, 1939-1951
14 Salem, N., B. Litman, H. Y. Kim, and K. Gawrisch. 2001. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36, 945-959   DOI   ScienceOn
15 SanGiovanni, J. P., S. Parra-Cabrera, G. A. golditz, C. S. Berkey, and J. T. Dwyer. 2000. Meta-analysis of dietary essential fatty acids and long-chain polyunsaturated fatty acids as they related to visual resolution acuity in healthy preterm infants. Pediatr. 105, 1292-1298   DOI   ScienceOn
16 Sastry, P. 1985. Lipids of nervous tissue: Composition and metabolism. Prog. Lipid Res. 24, 69-176   DOI   ScienceOn
17 Sinclair, A. J. 1975. Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rat. Lipids 10, 120-123
18 Gamoh, S., M. Hahimoto, K. Sugioka, M. Shahdat-Hossain, Y. Misawa and S. Masumura. 1991. Chronic administration of docosahexaenoic acid improves reference memoryrelated learning ability in young rats. Neurosci. 93, 237-241
19 Carrie, I., P. Guesnet, J. M. Bourr, and H. Frances. 2000. Diets containing long-chain n-3 polyubsaturated fatty acids affect behavior differently during development than aging in mice. Br. J. Nutr. 83, 439-447
20 Connor, W. E. and M. Neuringer. 1988. The effect of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of brain and retina. pp. 275-294, In Karnovsky, M. L., A. Leaf, and L. C. Bolls (eds.), Biological Membranes: Aberrations in Membrane Structure and Function, Liss Inc., New York
21 Green, P. and E. Yavin. 1998. Mechanisms of docosahexaenoic acid accretion in the fetal brain. J. Neurosci. Res. 52, 129-136   DOI   ScienceOn
22 Greiner, R. S., T. Moriguchi, B. M. Slotnick, A. Hurron, and N. Salem. 2001. Olfactory discrimination deficits in n-3 fatty acid-deficient rats. Physiol. Behav. 72, 379-385   DOI   ScienceOn
23 Lim, S. Y. and H. Suzuki. 2000. Intakes of dietary docosahexaenoic acid ethyl ester and egg phosphatidylcholine improve maze-learning ability in young and old mice. J. Nutr. 130, 1629-1632
24 Lim, S. Y. and H. Suzuki. 2001. Changes in maze behavior of mice occur after sufficient accumulation of docosahexaenoic acid in brain. J. Nutr. 131, 319-324
25 Lim, S. Y. and H. Suzuki. 2005. Effect of dietary docosahexaenoic acid on maze-learning ability in aged mice fed n-3 fatty acid deficient diet. Food Sci. Biotechnol. 14, 788-792
26 Lim, S. Y. 2007. Effect of supplementation with docosahexaenoic acid from gestation to adulthood on spatial learning performance in rat. J. Life Sci. 17, 1400-1405   DOI   ScienceOn