• 제목/요약/키워드: brain stimulation

검색결과 473건 처리시간 0.021초

Chopper Application for Magnetic Stimulation

  • Choi, Sun-Seob;Lee, Sun-Min;Kim, Jun-Hyoung;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.213-220
    • /
    • 2010
  • Since the hypothalamus immediately reacts to a nerve by processing all the information from the human body and the external stimulus being conducted, it performs a significant role in internal secretion; thus, a diverse and rapid stimulus pulse is required. By detecting Zero Detector accurately via the application of AVR on-Chip (ATMEL) using commercial electricity, chopping generates a stimulus pulse to the brain using an IGBT gate to designate a new magnetic stimulation following treatment and diagnosis. To simplify and generate a diverse range of stimuli for the brain, chopping can be used as a free magnetic stimulator. Then, commercial frequency (60Hz) is chopped precisely at the first level of the leakage transformer to deliver an appropriate stimulus pulse towards the hypothalamus when necessary. Discharge becomes stable, and the chopping frequency and duty-ratio provide variety after authorizing a high-pressure chopping voltage at the second level of the magnetic stimulator. These methods have several aims. The first is to apply a variable stimulus pulse via accurate switching frequency control by a voltaic pulse or a pulse repetition rate, according to the diagnostic purpose for a given hypothalamus. Consequently, the efficiency tends to increase. This experiment was conducted at a maximum of 210 W, a magnetic induced amplitude of 0.1~2.5 Tesla, a pulse duration of $200{\sim}350\;{\mu}s$, magnetic inducement of 5 Hz, stimulus frequency of 0.1~60 Hz, and a duration of stimulus train of 1~10 sec.

Layer-specific serotonergic induction of long-term depression in the prefrontal cortex of rats

  • Shin, Dongchul;Cho, Kwang-Hyun;Joo, Kayoung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.517-527
    • /
    • 2020
  • Layer 2/3 pyramidal neurons (L2/3 PyNs) of the cortex extend their basal dendrites near the soma and as apical dendritic tufts in layer 1, which mainly receive feedforward and feedback inputs, respectively. It is suggested that neuromodulators such as serotonin and acetylcholine may regulate the information flow between brain structures depending on the brain state. However, little is known about the dendritic compartment-specific induction of synaptic transmission in single PyNs. Here, we studied layer-specific serotonergic and cholinergic induction of long-term synaptic plasticity in L2/3 PyNs of the agranular insular cortex, a lateral component of the orbitofrontal cortex. Using FM1-43 dye unloading, we verified that local electrical stimulation to layers 1 (L1) and 3 (L3) activated axon terminals mostly located in L1 and perisomatic area (L2/3). Independent and AMPA receptor-mediated excitatory postsynaptic potential was evoked by local electrical stimulation of either L1 or L3. Application of serotonin (5-HT, 10 μM) induced activity-dependent longterm depression (LTD) in L2/3 but not in L1 inputs. LTD induced by 5-HT was blocked by the 5-HT2 receptor antagonist ketanserin, an NMDA receptor antagonist and by intracellular Ca2+ chelation. The 5-HT2 receptor agonist α-me-5-HT mimicked the LTD induced by 5-HT. However, the application of carbachol induced muscarinic receptor-dependent LTD in both inputs. The differential layer-specific induction of LTD by neuromodulators might play an important role in information processing mechanism of the prefrontal cortex.

경두개 전침과 발효황금 병행 투여가 흰쥐의 허혈성 뇌세포 손상에 미치는 효과 (Combination of Transcranial Electro-Acupuncture and Fermented Scutellaria baicalensis Ameliorates Motor Recovery and Cortical Neural Excitability Following Focal Stroke in Rats)

  • 김민선;구호;최명애;문세진;양승범;김재효
    • Korean Journal of Acupuncture
    • /
    • 제35권4호
    • /
    • pp.187-202
    • /
    • 2018
  • Objectives : Non-invasive transcranial electrical stimulation is one of therapeutic interventions to change in neural excitability of the cortex. Transcranial electro-acupuncture (TEA) can modulate brain functions through changes in cortical excitability as a model of non-invasive transcranial electrical stimulation. Some composites of fermented Scutellaria baicalenis (FSB) can activate intercellular signaling pathways for activation of brain-derived neurotrophic factor that is critical for formation of neural plasticity in stroke patients. This study was aimed at evaluation of combinatory treatment of TEA and FSB on behavior recovery and cortical neural excitability in rodent focal stroke model. Methods : Focal ischemic stroke was induced by photothrombotic injury to the motor cortex of adult rats. Application of TEA with 20 Hz and $200{\mu}A$ in combination with daily oral treatment of FBS was given to stroke animals for 3 weeks. Motor recovery was evaluated by rotating bean test and ladder working test. Electrical activity of cortical pyramidal neurons of stroke model was evaluated by using multi-channel extracellular recording technique and thallium autometallography. Results : Compared with control stroke group who did not receive any treatment, Combination of TEA and FSB treatment resulted in more rapid recovery of forelimb movement following focal stroke. This combination treatment also elicited increase in spontaneous firing rate of putative pyramidal neurons. Furthermore expression of metabolic marker for neural excitability was upregulated in peri-infract area under thallium autometallography. Conclusions : These results suggest that combination treatment of TEA and FSB can be a possible remedy for motor recovery in focal stroke.

복신(茯神)의 인지기능 향상 및 해마 신경세포분화 촉진에 대한 효능 연구 (Effect of Hoelen Cum Radix on learning and memory enhancement via stimulation of neuronal differentiation in the hippocampus of the mouse brain)

  • 최진규;심여문;김원남;김선여;오명숙
    • 대한본초학회지
    • /
    • 제30권2호
    • /
    • pp.43-48
    • /
    • 2015
  • Objectives : The aim of this study was to investigate the memory enhancing properties of extract of Hoelen Cum Radix (HCR) and its possible mechanism in mice of normal condition. Methods : We evaluated the effects of HCR on cognitive function and memory enhancement in normal mice. Male ICR mice were orally administrated with HCR 100 mg/kg for 7 days and equal volume of saline was administrated to the control group in the same condition. We conducted two behavioral tests which measure the spatial working memory (Y-maze test) and cognitive fear memory (passive avoidance test). We also investigated whether HCR affects the hippocampal neurogenesis in the brain. To assess the effects of HCR on neural progenitor cell differentiation and neurite outgrowth in the early stage of hippocampal neurogenesis, we performed doublecortin (DCX), a direct neurogenesis marker, immunohistochemical analysis in the dentate gyrus (DG) of the mouse hippocampus. Results : HCR significantly enhanced memory and cognitive function as determined by the Y-maze test (p<0.05) and passive avoidance test (p<0.001). Moreover, HCR increased DCX positive cells (p<0.01) and neurite length (p<0.01) compared to the control group. These results indicated that HCR stimulates differentiation of neural progenitor cells and promotes neurite outgrowth in hippocampal DG of the mice. Conclusion : We concluded that HCR shows memory enhancing effects through the stimulation of hippocampal neurogenesis as a consequence of accelerated neuronal differentiation and neurite outgrowth in the DG of the hippocampus after HCR treatment.

이중 주파수 tACS를 이용한 안정상태 시각 유발 전위 반응 향상 (Enhancing Multiple Steady-State Visual Evoked Potential Responses Using Dual-frequency tACS)

  • 김정희;김상수;정영진;김도원
    • 대한의용생체공학회:의공학회지
    • /
    • 제45권2호
    • /
    • pp.101-107
    • /
    • 2024
  • Steady-state visual evoked potential-based brain-computer interface (SSVEP-BCI) is one of the promising systems that can serve as an alternative input device due to its stable and fast performance. However, one of the major bottlenecks is that some individuals exhibit no or very low SSVEP responses to flickering stimulation, known as SSVEP illiteracy, resulting in low performance on SSVEP-BCIs. However, a lengthy duration is required to enhance multiple SSVEP responses using traditional single-frequency transcranial alternating current stimulation (tACS). This research proposes a novel approach using dual-frequency tACS (df-tACS) to potentially enhance SSVEP by targeting the two frequencies with the lowest signal-to-noise ratio (SNR) for each participant. Seven participants (five males, average age: 24.42) were exposed to flickering checkerboard stimuli at six frequencies to determine the weakest SNR frequencies. These frequencies were then simultaneously stimulated using df-tACS for 20 minutes, and the experiment was repeated to evaluate changes in SSVEP responses. The results showed that df-tACS effectively enhances the SNR at each targeted frequency, suggesting it can selectively improve target frequency responses. The study supports df-tACS as a more efficient solution for SSVEP illiteracy, proposing further exploration into multi-frequency tACS that could stimulate more than two frequencies, thereby expanding the potential of SSVEP-BCIs.

Effects of Rice Bran Extracts Fermented with Lactobacillus plantarum on Neuroprotection and Cognitive Improvement in a Rat Model of Ischemic Brain Injury

  • Hong, Jeong Hwa;Kim, Ji Yeong;Baek, Seung Eun;Ingkasupart, Pajaree;Park, Hwa Jin;Kang, Sung Goo
    • 대한의생명과학회지
    • /
    • 제21권2호
    • /
    • pp.92-102
    • /
    • 2015
  • This work aimed to study whether rice bran extract fermented with Lactobacillus plantarum (LW) promotes functional recovery and reduces cognitive impairment after ischemic brain injury. Ischemic brain injury was induced by middle cerebral artery occlusion (MCAO) in rats. Four groups were studied, namely the (1) sham, (2) vehicle, (3) donepezil, and (4) LW groups. Animals were injected with LW once a day for 7 days after middle cerebral artery occlusion. LW group showed significantly improved neurological function as compared to the vehicle group, as well as enhanced learning and memory in the Morris water maze. The LW group showed the greatest functional recovery. Moreover, the LW group showed an enhanced more survival cells anti-apoptotic effect in the cortex and neural cell densities in the hippocampal DG and CA1. In addition, this group showed enhanced expression of neurotrophic factors, antioxidant genes, and the acetylcholine receptor gene, as well as synaptophysin (SYP), Fox-3 (NeuN), doublecortin (DCX), and choline acetyltransferase (ChAT) proteins. Our findings indicate that LW treatment showed the largest effects in functional recovery and cognitive improvement after ischemic brain injury through stimulation of the acetylcholine receptor, antioxidant genes, neurotrophic factors, and expression of NeuN, SYP, DCX, and ChAT.

장기간의 Pyridoxine 부족이 새끼쥐 뇌의 지방조성에 미치는 영향 (Effect of Long-Term Pyridoxine Depletion on Lipid Composition in the Developing Rat Brain)

  • 김정희
    • Journal of Nutrition and Health
    • /
    • 제20권5호
    • /
    • pp.318-329
    • /
    • 1987
  • 이유한 Sprague Dawley 암컷 쥐에게 성장, 임신, 수유기간 동안 Pyrridoxine이 충분한 식이와 Pyridoxine 이 부족된 식이를 주어 사육했으며, 또는 다른 군은 성장, 임신기간은 pyridoxine이 부족된 식이를 공급받아가 생후 5, 10, 21일에 각각 pyridoxine 이 풍부한 식이로 바꾸어 주어회복정도를 살펴보았다. 출생후, 5, 10, 15, 21,35, 50 일에 체중을 재고 새끼를 희생시켜 뇌와 적혈구를 실험에 사용하였다. 적혈구에서는 alanine aminotransferase 활성을 측정하였고, 뇌에서는 cholesterol, proteolipid protein, cerebroside를 측정하였다. Pyridoxine이 부족된 쥐는 실험기간동안 유의적으로 체중과 뇌무게가 감소했으며, erythrocyte alanine aminotransferase 활성의 증가정도가 훨씬 높은 것으로 보아 체내 비타민 B6 의 영양상태가 나쁨을 알 수 있었다. 할편, 뇌의 ceregroside의 gakfid은 유의적인 차리를 보였으며 5, 10, 21일에 supplementation 시킨 쥐의 이유후의 cerbroside 의 생성속도의 증가로 보아 supplementation 시킨 쥐의 myelinatino 이 저해되었음을 알수 있다. 한편, cholesterol, proteolipid protein 도 부족식이에 의해 영향을 받았는데 생후 5 일에 supplementation 시킨 쥐는 정상수준으로 회복되나 10 일 이후에 supplementation 시켰을대는 정상수준에 미치지 못하였다.

  • PDF

Proteomic Analysis of Rat PC12 Cells Exposed to Cyclosporin A

  • Jung, Ji-Yeon;Seol, Kwang;Jeong, Yeon-Jin;Kim, Won-Jae;Oh, Sang-Jin
    • International Journal of Oral Biology
    • /
    • 제34권1호
    • /
    • pp.29-36
    • /
    • 2009
  • Cyclosporin A (CsA) has been used clinically as an immunosuppressive drug to prevent organ transplant rejection and in basic research as a mitochondrial permeability blocker. It has been reported that CsA has a protective role in severed neurons and a neurotrophic effect in neuronal cells. However, the molecular mechanisms underlying the stimulation of neuronal cell proliferation by CsA have not yet been elucidated. In our current study, we investigated CsA responsive proteins in PC12 cells using a systematic proteomic approach. The viability of these cells following CsA treatment increased in a dose- and time-dependent manner. Proteins in the CsA-treated PC12 cells were profiled by two-dimensional gel electrophoresis (2-DE) and identified by matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) and electrospray ionization quadupole time-of-flight mass spectrometries (EIQ-TOFMS). This differential expression analysis showed significant changes for 10 proteins (6 up-regulated and 4 down-regulated) upon CsA treatment that were related to cell proliferation, metabolism and the stress response. These proteomics data further our understanding of the proliferation mechanisms of PC12 cells exposed to CsA and demonstrate that our methodology has potential to further elucidate the mechanisms and pathways involved.

지연성근육통 중재 후 통증의 변화가 뇌파와 자율신경계에 미치는 융합적 분석 (Convergence analysis of pain changes on brain wave and autonomic nervous system after intervention for delayed onset muscle soreness)

  • 김경윤;배세현
    • 한국융합학회논문지
    • /
    • 제12권2호
    • /
    • pp.61-66
    • /
    • 2021
  • 본 연구의 목적은 지연성근육통의 통증 변화가 자율신경계와 뇌파에 미치는 영향을 알아보고자 하였다. 지연성 근육통이 유발된 28명을 대조군(n=14)과 실험군(경피신경자극과 키네시오테이핑 적용, n=14)으로 구분하였다. 중재는 지연성근육통 유발 1일 후부터 5일 동안 실시하였다. 평가는 VAS(visual analog scale), 심박변이, 뇌파를 사용하여 지연성근육통 유발 전, 유발 24시간 후, 5일 치료 후, 치료 중단 3일 후에 측정하였다. 실험 결과 지연성근육통이 발생하면 교감신경계의 활성 증가 또는 부교감신경계 활성 억제가 되며, 중재로 인한 통증 감소는 반대의 활동이 나타났다. 통증 발생 시 alpha파의 감소가 나타났으나 유의하지 않았다. 본 연구 결과 통증 변화는 자율신경계와 뇌파에 영향을 미침을 알 수 있었으며, 이러한 결과는 통증 관리와 치료 전략 개발 및 연구에 도움이 될 것이다.

뇌전도 측정 및 처리 시스템 개발에 관한 연구 (Research on development of electroencephalography Measurement and Processing system)

  • 이두현;오유준;홍진희;채준수;최영규
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.38-46
    • /
    • 2024
  • 일반적으로 EEG 신호 분석은 의료 진단 및 재활 공학에 적용하여 뇌-컴퓨터 인터페이스 연구에 널리 사용되는 뇌 자극을 기록하는 객관적인 모드를 제공할 수 있는 능력 때문에 여러 연구의 주제가 되어 왔습니다. 본 연구에서는 뇌전도 측정하기 위한 뇌파 수신 하드웨어 개발 및 처리 시스템 구현을 통해 서버와 데이터 처리로 분류하여 개발을 진행하였다. 뇌전도를 이용한 뇌-컴퓨터 인터페이스 구현의 중간단계 연구로 진행되었으며, 측정된 뇌전도 데이터에 따라 사용자의 팔의 움직임을 예측하는 형태로 구현되었다. 네 개의 전극으로부터의 입력을 아날로그-디지털 변환기를 통해 뇌전도 측정을 수행하였다. 이를 통신 과정을 거쳐 서버에 전송한 뒤, 서버에서 합성곱 신경망 모델로 뇌전도 입력을 분류하여 그 결과를 사용자 단말로 표시하는 시스템의 흐름을 설계하고 구현하였다.