• Title/Summary/Keyword: brain stimulation

Search Result 472, Processing Time 0.022 seconds

Alterations of Cerebral Metabolic Activation Following Electro-Acupuncture Stimulation on ST36 and LR3 Acu-Points in Rats (흰쥐의 족삼리 및 태충 전침자극에 따른 뇌대사활성의 변화)

  • Sohn, Young-Joo;Jung, Hyuk-Sang;Ku, Ja-Seung;Won, Ran;Kim, Yong-Suk;Park, Young-Bae;Sohn, Nak-Won
    • Journal of Acupuncture Research
    • /
    • v.19 no.1
    • /
    • pp.159-174
    • /
    • 2002
  • Objective : The meridian theory in oriental medicine explains that each acu-point has a characteristic functional effect. It will be supposed that an acupuncture stimulation on different acu-point evokes different activation on different areas in the central nervous system(CNS) according to the meridian theory. On this supposition, our group tried the semi-quantitative [14C]2-deoxyglucose([14C]2-DG) autoradiography on the acupuncture stimulation to the hindlimb acu-points of Sprague-Dawley rats. Methods : A venous catheter for the intravenous administration of isotope was equipped in the right external jugular vein on 3 days prior to the [14C]2-DG study. On the day of the study, two acupuncture needles were inserted into the ST36(Zusanli) or LR3(Taichong) on the left hindlimb. Electro-acupuncture stimulation (2 Hz, 5 ms, 1~3 mA, 15 minutes) started just before the i.v. injection of [14C]2-DG ($25{\mu}Ci/rat$). The brain and the spinal cord were removed and processed for the [14C] 2-DG autoradiography. Results : The EA stimulation on ST36 reveals over 120% metaboilc activation in Arcuate nucleus, Anterior pretectal nucleus, Dorsal cochlear nucleus, Interposed cerebellar nucleus, and Nucleus of Darkschewitsch. The EA stimulation on LR3 reveals over 120% metaboilc activation in Lateral habenula nucleus, Medial vestibular nucleus, Ventromedial thalamic nucleus, Anteroventral thalamic nucleus, Anterior cingulate cortex, Dentate gyrus, Antero cortical amygdaloid nucleus, Anterior pretectal nucleus, and Dorsal tegmental nucleus compared with the non EA stimulation control group. Conclusion : These results demonstrate that the different acu-points evoke the different activations in brain areas. And with this functional brain mapping study, a new scientific elucidation for the basis of the acupuncture-meridian theory in oriental medicine through differences of activated area in CNS according to the each acupuncture point.

  • PDF

Effects of Vibration Stimulation Method on Upper Limbs Spasticity in Patients with Brain Lesion (진동자극 방식이 뇌병변 환자의 상지경직에 미치는 영향)

  • Bae, Sea-Hyun;Kim, Kyung-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3109-3116
    • /
    • 2011
  • We studied the effects of vibration stimulation method on upper limbs spasticity in patients with brain lesion. 21 patients with spasticity of the upper limbs selected and divided randomly 3 groups. And then vibratory stimulation was applied to the triceps brachii muscle in group I(n=7), to biceps brachii muscle in group II (n=7), and to both muscles in group III (n=7). Using Neuro-EMG_Micro to investigate the changes in spinal neuronal excitability, F-waves were measured at before and directly after stimulation, and 10 minutes later and 20 minutes later after stimulation especially. MAS(Modified Ashworth Scale) test for muscle tone and MFT(Manual Function Test) for the upper extremity motor function were performed before stimulation and 20 minutes later after stimulation for the purpose of clinical evaluation. In our study, MAS was significant decreased in all groups, F wave and F/M ratio parameters were decreased in all groups and more decreased specially in group III. MFT was increased in group II and III, and more increased specially in group III. Vibration stimulation reduced the neuronal excitability of spinal cord and also muscle tone, and improved the motor function of the upper extremity. These results suggested that vibration stimulation giving to both muscles(triceps and biceps brachii muscle) at the same time was more efficiency in reducing the neuronal excitability of spinal cord and improving the motor function of the upper limbs.

Thalamic Deep Brain Stimulation for Writer's Cramp

  • Cho, Chul-Bum;Park, Hae-Kwan;Lee, Kyung-Jin;Rha, Hyoung-Kyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.1
    • /
    • pp.52-55
    • /
    • 2009
  • Writer's cramp is a type of idiopathic focal hand dystonia characterized by muscle cramps that accompany execution of the writing task specifically. There has been renewed interest in neurosurgical procedures for the treatment of dystonia over the past several years. In particular, deep brain stimulation (DBS) has received increasing attention as a therapeutic option for patients with dystonia. However, to date, limited reporters made investigations into DBS in relation to the Writer's cramp. In this case, unilateral Ventro-oralis complex (Vo) DBS resulted in a major improvement in patient's focal dystonic movement disorders. Her post-operative Burke-Fahn-Marsden Dystonia Rating (BFMDR) scale demonstrated 1 compared with pre-operative BFMDR scale 4. We conclude that thalamic Vo complex DBS maybe an important neurosurgical therapeutic option for Writer's cramp.

Neurophysiological Evaluation of the Motor System Using Transcranial Magnetic Stimulation (뇌자기자극을 이용한 운동신경계의 신경생리학적 평가)

  • Shin, Hae-Won;Sohn, Young-H.
    • Annals of Clinical Neurophysiology
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • Transcranial magnetic stimulation (TMS) is a non-invasive tool used to study aspects of human brain physiology, including motor function and the pathophysiology of various brain disorders. A brief electric current passed through a magnetic coil produces a high-intensity magnetic field, which can excite or inhibit the cerebral cortex. Although various brain regions can be evaluated by TMS, most studies have focused on the motor cortex where motor evoked potentials (MEPs) are produced. Single-pulse and paired-pulse TMS can be used to measure the excitability of the motor cortex via various parameters, while repetitive TMS induces cortical plasticity via long-term potentiation or long-term depression-like mechanisms. Therefore, TMS is useful in the evaluation of physiological mechanisms of various neurological diseases, including movement disorders and epilepsy. In addition, it has diagnostic utility in spinal cord diseases, amyotrophic lateral sclerosis and demyelinating diseases. The therapeutic effects of repetitive TMS on stroke, Parkinson disease and focal hand dystonia are limited since the duration and clinical benefits seem to be temporary. New TMS techniques, which may improve clinical utility, are being developed to enhance clinical utilities in various neurological diseases.

Study on Change of Poly ADP Ribose Polymerase in the Rat with Thrombotic Stroke by Full Wave Cockroft Walton method's Transcranial Magnetic Stimulation

  • Kim, Whi-Young;Kim, Jun-Hyoung
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • This study examined the relationships between protein expression and Poly ADP ribose polymerase in brain cell death in brains damaged by thrombotic stroke and treated with the Full Wave- Cockroft Walton (FWCW) method of Transcranial Magnetic Stimulation (TMS). The two-way switching element for TMS drove a half-bridge inverter of the current resonance of direct current voltage (+) and direct current voltage (-), and the experiment was conducted by stimulating the mice with thrombotic stroke through a range of pulses. Thrombotic stroke was caused of ligation of the common carotid artery of male SD mice, and blood reperfusion was conducted five minutes later. Protein expression was examined in immune reaction cells, which reacted to an antibody to Poly ADP ribose polymerase in the cerebrum cells, and western blotting. Observations of the PARP changes after thrombotic stroke showed that the number of Poly ADP ribose polymerase reactions were significantly lower (p < 0.05) in the group treated with TMS of the FWCW than the group with thrombotic stroke 24 hours after its onset. The application of FWCW-TMS helped prevent the necrosis of nerve cells and might prevent the brain damage that occurs as a result of thrombotic stroke, and improve the function recovery and disorder of brain cells.

fMRI of Visual and Motor Stimuli : Difference of Total Activation Depends on Stimulation Paradigm (시각과 운동의 뇌기능영상 : 자극에 따른 총활성화의 차이)

  • 정순철;송인찬;장기현;유병기;문치웅;조장희
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.41-46
    • /
    • 1999
  • Purpose : To investigate the difference of total activation in visual area, motor area, and cerebellum according to the stimulation paradigm. Materials and Methods : Functional MR imaging was performed in 5 healthy volunteers with visual and motor activity using EPI technique. LED and Checker-Board stimulation were performed for visual activity. Thumb motion and Finger Tapping were performed for motor and cerebellum activity. Stimulus timing was 60sec. off, 120sec. on, 60sec. off. Data processing was carried out by using the cross-correlation method for each pixel. Each pixel was then selected and assumed activated if the correlation coefficient was equal or larger than a threshold value. Time course data was obtained by calculating the total activation which was defined as the number of activated pixel x averaged pixel intensity. Results : In the case of visual activity with LED stimulation, we found increased total activity of more than 100% compared with Checker-Board stimulation. In the case of motor area and cerebellum with Finger tapping stimulation, we found increased total activity of more than 10% and 150%, respectively compared with Thumb motion stimulation.

  • PDF

A fMRI study on the cerebral activity induced by Electro-acupuncture on K7(Fuliu) (복류(復溜)(K7) 전침자극(電鍼刺戟)이 functional MRI상 뇌기능(腦機能) 변화(變化)에 미치는 영향(影響))

  • Kang, Jae-hui;Lee, Hyun;Lee, Byung-ryul;Hong, Kwon-eui;Yim, Yun-kyoung;Kim, Yun-jin
    • Journal of Acupuncture Research
    • /
    • v.20 no.4
    • /
    • pp.66-84
    • /
    • 2003
  • Objectve : Recent stuides suggested that there is a strong correlation between acupuncture stimulation and its cortical activation. Another study showed that either positive or negative BOLD effects could be observed depending on anatomical structure in acupuncture. Methods : 1) Subjects and paradigms: Two separate stimulation paradigms were performed in this study. To see the effects of electro-acupuncture stimulation on K7(Fuliu), the experiment was carried out on six healthy volunteers, using the gradient echo sequence with the 3.0T whole-body MRI system(ISOL). After the needle insertion on right K7(Fuliu), 2 Hz of electric stimulation was given for 30 seconds, repeated five times, with 30 seconds' intervals. During the intervals while there was no electro-stimulation, the subjects performed motor task as a reference. The image analysis including motion correction, talairach transformation, and smoothing was done using SPM99. Results: The electro-acupuncture stimulation on K7(Fuliu) activated Brodmann's Areas of 9, 19, 23, 24, 31, 32, 39 which may be the central pathways of the electro-acupuncture stimulation on K7(Fuliu) and those brain areas may be related with the function of the electro-acupuncture stimulation on K7(Fuliu).

  • PDF

Intraoperative Neurophysiological Monitoring in Cerebello Pontine Angle Tumor

  • Park, Sang-Ku
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.46 no.1
    • /
    • pp.38-45
    • /
    • 2014
  • Intraoperative Neurophysiological Monitoring (INM) inspection has a very important role. While preserving the patient's neurological function be sure to safe surgery, neurological examination should thank. Cerebello pontine angle tumor surgery, especially in the nervous system is more important to the meaning of INM. In cochlear nerve, facial nerve, trigeminal nerve, which are intricate brain surgery, doctors are only human eye and brain to the brain that it is virtually impossible to distinguish the nervous system. They receives a lot of help from INM. In this paper, we examined six kinds broadly. First, the methods of spontaneous EMG and Free-running EMG, which can instantly detect a damage inflicted on a nerve during surgery. Second, methods of triggered EMG and direct nerve electrical stimulation, which directly stimulate a nerve using electricity to distinguish between nerves and brain tumors. Third, the method of knowing a more accurate neurologic status by informing neurological surgeons about Free-running EMG wave forms that are segmetalized into four. Fourth, three ways of knowing when a patient will be awaken from intraoperative anesthesia, which happens due to a weak anesthetic. Fifth, a method of understanding the structures of a brain tumor and a facial nerve as five dividend segments. Sixth, comparisons between cases normal facial nerve recovery and occurrence of a facial nerve paralysis during the postoperative course.

Comparisons of functional brain mappings in sensory and affective aspects following taste stimulation (미각자극에 따른 감각 및 감성적 미각정보 처리과정의 기능적 매핑 비교)

  • Lee, Kyung Hee
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.585-592
    • /
    • 2012
  • Food is crucial for the nutrition and survival of humans. Taste system is one of the fundamental senses. Taste cells detect and respond to five basic taste modalities (sweet, bitter, salty, sour, and umami). However, the cortical processing of taste sensation is much less understood. Recently, there were many efforts to observe the brain activation in response to taste stimulation using functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and optical imaging. These different techniques do not provide directly comparable data each other, but the complementary investigations with those techniques allowed the description and understanding of the sequence of events with the dynamics of the spatiotemporal pattern of activation in the brain in response to taste stimulation. The purpose of this study is the understanding of the brain activities to taste stimuli in sensory and affective aspects and the reviewing of the recent research of the gustotopic map by functional brain mapping.

  • PDF

EEG Changes due to Low-Frequency Electrical Stimulation to the BL62 and KI6 of Elderly Women (노년 여성의 신맥.조해 저주파 자극이 뇌파에 미치는 영향)

  • Lee, Sanghun;Choi, Kwang-Ho;Cho, Seong Jin;Choi, Sun-Mi;Hong, Kwon Eui;Ryu, Yeon-Hee
    • Korean Journal of Acupuncture
    • /
    • v.30 no.2
    • /
    • pp.135-142
    • /
    • 2013
  • Objectives : This study aimed to investigate the general effects of low-frequency electrical stimulation of the ankle joint acupuncture points(BL62 and KI6) on the brain waves of elderly women as a pilot study to figure out the possibility of candidate non-invasive and non-chemical stimulation method for the enhancing the brain function. Methods : A randomized, controlled, double-blinded clinical trial was performed in 31 healthy women(mean age, 54.5 years) within a treatment duration of 12 sessions. In the experimental group, low-frequency electrical stimulation was applied using the maximum range of the individual insensible strength(mean current, $0.04{\mu}A$). The control group received sham stimulation. The background electroencephalographic activity was measured before and after the12 sessions. Results : After 12 sessions of stimulation, the relative power of the alpha wave increased(32 of 32 channels: significant difference in 11 channels, p<0.05); the theta(30 of 32 channels: significant difference in 10 channels, p<0.05), beta(31 of 32 channels), and gamma(30 of 32 channels: significant difference in 7 channels, p<0.05) powers were also decreased compared with the sham group. Conclusions : Electrical stimulation on the ankle joint acupuncture points(BL62 and KI6) seemed to stabilize the elderly women brain by inducing the alpha power and reducing beta, theta, and gamma powers. These results provide insight into the action mechanism of the stimulation and can assist the future developement of a non-invasive and non-chemical treatment technique for stressor related cognitive problems.