• Title/Summary/Keyword: brain network

Search Result 389, Processing Time 0.026 seconds

Typical Models of Artificial Neural Network and Their Application Fields to the Power System (인공신경회로망의 대표적 모델과 전력계통적용에 대한 조사연구)

  • Ko, Yun-Seok;Kim, Ho-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.143-146
    • /
    • 1990
  • The human brain has the most powerful capabilities in thinking, interpreting, remembering, and problem-solving. Artificial neural network is appeared by scientists who have tried to simulate such a human brain. The artificial neural network has the capability of learning, massive parallelism capability and robustness for disturbance which are necessary for power system application. In this paper, We reviewed the typical topologies and learning algorithms of artifical neural networks which can be used for pattern classification. And we surveyed for the applications of artifical neural network to the power system.

  • PDF

Genetic algorithm based deep learning neural network structure and hyperparameter optimization (유전 알고리즘 기반의 심층 학습 신경망 구조와 초모수 최적화)

  • Lee, Sanghyeop;Kang, Do-Young;Park, Jangsik
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.519-527
    • /
    • 2021
  • Alzheimer's disease is one of the challenges to tackle in the coming aging era and is attempting to diagnose and predict through various biomarkers. While the application of various deep learning-based technologies as powerful imaging technologies has recently expanded across the medical industry, empirical design is not easy because there are various deep earning neural networks architecture and categorical hyperparameters that rely on problems and data to solve. In this paper, we show the possibility of optimizing a deep learning neural network structure and hyperparameters for Alzheimer's disease classification in amyloid brain images in a representative deep earning neural networks architecture using genetic algorithms. It was observed that the optimal deep learning neural network structure and hyperparameter were chosen as the values of the experiment were converging.

Human Emotion Recognition using Power Spectrum of EEG Signals : Application of Bayesian Networks and Relative Power Values (EEG 신호의 Power Spectrum을 이용한 사람의 감정인식 방법 : Bayesian Networks와 상대 Power values 응용)

  • Yeom, Hong-Gi;Han, Cheol-Hun;Kim, Ho-Duck;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.251-256
    • /
    • 2008
  • Many researchers are studying about human Brain-Computer Interface(BCI) that it based on electroencephalogram(EEG) signals of multichannel. The researches of EEG signals are used for detection of a seizure or a epilepsy and as a lie detector. The researches about an interface between Brain and Computer have been studied robots control and game of using human brain as engineering recently. Especially, a field of brain studies used EEG signals is put emphasis on EEG artifacts elimination for correct signals. In this paper, we measure EEG signals as human emotions and divide it into five frequence parts. They are calculated related the percentage of selecting range to total range. the calculating values are compared standard values by Bayesian Network. lastly, we show the human face avatar as human Emotion.

Functional Neuroanatomy of Memory (기억의 기능적 신경 해부학)

  • Lee, Sung-Hoon
    • Sleep Medicine and Psychophysiology
    • /
    • v.4 no.1
    • /
    • pp.15-28
    • /
    • 1997
  • Longterm memory is encoded in the neuronal connectivities of the brain. The most successful models of human memory in their operations are models of distributed and self-organized associative memory, which are founded in the principle of simulaneous convergence in network formation. Memory is not perceived as the qualities inherent in physical objects or events, but as a set of relations previously established in a neural net by simultaneousy occuring experiences. When it is easy to find correlations with existing neural networks through analysis of network structures, memory is automatically encoded in cerebral cortex. However, in the emergence of informations which are complicated to classify and correlated with existing networks, and conflictual with other networks, those informations are sent to the subcortex including hippocampus. Memory is stored in the form of templates distributed across several different cortical regions. The hippocampus provides detailed maps for the conjoint binding and calling up of widely distributed informations. Knowledge about the distribution of correlated networks can transform the existing networks into new one. Then, hippocampus consolidats new formed network. Amygdala may enable the emotions to influence the information processing and memory as well as providing the visceral informations to them. Cortico-striatal-pallido-thalamo-cortical loop also play an important role in memory function with analysis of language and concept. In case of difficulty in processing in spite of parallel process of informations, frontal lobe organizes theses complicated informations of network analysis through temporal processing. With understanding of brain mechanism of memory and information processing, the brain mechanism of mental phenomena including psychopathology can be better explained in terms of neurobiology and meuropsychology.

  • PDF

Large-Scale Network Analysis using Effective Connectivity for Effective Brain Functional Imaging Analysis (효과적인 뇌기능 영상 분석을 위한 유효 연결성을 이용한 대규모 네트워크 분석)

  • Park, Ki-Hee;Lee, Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.377-378
    • /
    • 2011
  • 본 논문은 뇌기능 연구에 크게 기여하는 기능적 자기공명영상을 효과적으로 분석하기 위한 유효 연결성(Effective Connectivity, EC)을 이용한 대규모 네트워크(Large-Scale Network, LSN) 분석(LSN-EC)을 제안한다. 유효 연결성은 뇌영역간의 시공간적 인과관계를 표현한 연결성이며, 뇌의 기능적 연결성 및 구조탐색 사용된다. LSN-EC는 뇌영역간의 EC를 표현하고 그룹간의 차이분석을 통하여 뇌질환 분석 및 진단 연구로의 응용이 가능하다. 실험결과에서 알츠하이머병과 관련이 높다고 알려진 후대상피질(Posterior Cingulate Cortex)과 해마(Hippocampus)가 포함된 변연엽(Limbic Lobe), 기저핵 및 시상(Basal Ganglion and Thalamus) 주변 영역에서 감소된 EC를 확인하였다.

Contribution of ERP/EEG Measurements for Monitoring of Neurological Disorders

  • Lamia Bouafif;Cherif Adnen
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.59-66
    • /
    • 2024
  • Measurable electrophysiological changes in the scalp are frequently linked to brain activities. These progressions are called related evoked potentials (ERP), which are transient electrical responses recorded by electroencephalography (EEG) in light of tactile, mental, or motor enhancements. This painless strategy is gradually being used as a conclusion and clinical help. In this article, we will talk about the main ways to monitor brain activities in people with neurological diseases like Alzheimer's disease by analyzing EEG signals using ERP. We will also talk about how this method helps to detect the disease at an early stage.

THE ELEVATION OF EFFICACY IDENTIFYING PITUITARY TISSUE ABNORMALITIES WITHIN BRAIN IMAGES BY EMPLOYING MEMORY CONTRAST LEARNING TECHNIQUES

  • S. SINDHU;N. VIJAYALAKSHMI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.931-943
    • /
    • 2024
  • Accurately identifying brain tumors is crucial for medical imaging's precise diagnosis and treatment planning. This study presents a novel approach that uses cutting-edge image processing techniques to automatically segment brain tumors. with the use of the Pyramid Network algorithm. This technique accurately and robustly delineates tumor borders in MRI images. Our strategy incorporates special algorithms that efficiently address problems such as tumor heterogeneity and size and shape fluctuations. An assessment using the RESECT Dataset confirms the validity and reliability of the method and yields promising results in terms of accuracy and computing efficiency. This method has a great deal of promise to help physicians accurately identify tumors and assess the efficacy of treatments, which could lead to higher standards of care in the field of neuro-oncology.

VGG-based BAPL Score Classification of 18F-Florbetaben Amyloid Brain PET

  • Kang, Hyeon;Kim, Woong-Gon;Yang, Gyung-Seung;Kim, Hyun-Woo;Jeong, Ji-Eun;Yoon, Hyun-Jin;Cho, Kook;Jeong, Young-Jin;Kang, Do-Young
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.418-425
    • /
    • 2018
  • Amyloid brain positron emission tomography (PET) images are visually and subjectively analyzed by the physician with a lot of time and effort to determine the ${\beta}$-Amyloid ($A{\beta}$) deposition. We designed a convolutional neural network (CNN) model that predicts the $A{\beta}$-positive and $A{\beta}$-negative status. We performed 18F-florbetaben (FBB) brain PET on controls and patients (n=176) with mild cognitive impairment and Alzheimer's Disease (AD). We classified brain PET images visually as per the on the brain amyloid plaque load score. We designed the visual geometry group (VGG16) model for the visual assessment of slice-based samples. To evaluate only the gray matter and not the white matter, gray matter masking (GMM) was applied to the slice-based standard samples. All the performance metrics were higher with GMM than without GMM (accuracy 92.39 vs. 89.60, sensitivity 87.93 vs. 85.76, and specificity 98.94 vs. 95.32). For the patient-based standard, all the performance metrics were almost the same (accuracy 89.78 vs. 89.21), lower (sensitivity 93.97 vs. 99.14), and higher (specificity 81.67 vs. 70.00). The area under curve with the VGG16 model that observed the gray matter region only was slightly higher than the model that observed the whole brain for both slice-based and patient-based decision processes. Amyloid brain PET images can be appropriately analyzed using the CNN model for predicting the $A{\beta}$-positive and $A{\beta}$-negative status.

Detecting Stress Based Social Network Interactions Using Machine Learning Techniques

  • S.Rajasekhar;K.Ishthaq Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.101-106
    • /
    • 2023
  • In this busy world actually stress is continuously grow up in research and monitoring social websites. The social interaction is a process by which people act and react in relation with each other like play, fight, dance we can find social interactions. In this we find social structure means maintain the relationships among peoples and group of peoples. Its a limit and depends on its behavior. Because relationships established on expectations of every one involve depending on social network. There is lot of difference between emotional pain and physical pain. When you feel stress on physical body we all feel with tensions, stress on physical consequences, physical effects on our health. When we work on social network websites, developments or any research related information retrieving etc. our brain is going into stress. Actually by social network interactions like watching movies, online shopping, online marketing, online business here we observe sentiment analysis of movie reviews and feedback of customers either positive/negative. In movies there we can observe peoples reaction with each other it depends on actions in film like fights, dances, dialogues, content. Here we can analysis of stress on brain different actions of movie reviews. All these movie review analysis and stress on brain can calculated by machine learning techniques. Actually in target oriented business, the persons who are working in marketing always their brain in stress condition their emotional conditions are different at different times. In this paper how does brain deal with stress management. In software industries when developers are work at home, connected with clients in online work they gone under stress. And their emotional levels and stress levels always changes regarding work communication. In this paper we represent emotional intelligence with stress based analysis using machine learning techniques in social networks. It is ability of the person to be aware on your own emotions or feeling as well as feelings or emotions of the others use this awareness to manage self and your relationships. social interactions is not only about you its about every one can interacting and their expectations too. It about maintaining performance. Performance is sociological understanding how people can interact and a key to know analysis of social interactions. It is always to maintain successful interactions and inline expectations. That is to satisfy the audience. So people careful to control all of these and maintain impression management.

Snake Robot Motion Scheme Using Image and Voice (감각 정보를 이용한 뱀 로봇의 행동구현)

  • 강준영;김성주;조현찬;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.127-130
    • /
    • 2002
  • Human's brain action can divide by recognition and intelligence. recognition is sensing voice, image and smell and Intelligence is logical judgment, inference, decision. To this concept, Define function of cerebral cortex, and apply the result. Current expert system is lack, that reasoning by cerebral cortex and thalamus, hoppocampal and so on. In this paper, With human's brain action, wish to embody human's action artificially Embody brain mechanism using Modular Neural Network, Applied this result to snake robot.

  • PDF