• Title/Summary/Keyword: brain nerve growth factor

Search Result 33, Processing Time 0.022 seconds

Effects of Aqueous Extract of Achyranthes Japonica on Functional Recovery in Sciatic Nerve after Crushed Sciatic Nerve Injury in Rats (우슬 추출물이 흰쥐 좌골신경 손상 후 좌골신경의 기능회복에 미치는 영향)

  • Lee, Ma-Seong;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.143-158
    • /
    • 2011
  • Objectives : Peripheral nerve injuries are commonly encountered clinical problem and often result in severe functional deficits. The aim of this study is to evaluate the effects of aqueous extract of Achyranthes japonica(AJ) on functional recovery in sciatic nerve after crushed sciatic nerve injury. Methods : In the present study, the animals in the AJ-treated groups received the aqueous extract of AJ at the respective doses orally for 13 consecutive days. In order to assess the effects of the aqueous extract of AJ on function recovery in crushed sciatic nerve injury, sciatic functional index(SFI) was performed. c-Fos expression in the paraventricular nucleus(PVN) and ventrolateral periaqueductal gray(vIPAG), and neurofilament, and the expressions of brain-derived neurotrophic factor(BDNF), nerve growth factor(NGF) following crushed sciatic nerve injury in rats were investigated. For this, immunohistochemistry and western blot were performed. Results : In the present study, crushed sciatic nerve injury showed characteristic gait changes showing decrease of SFI value and treatment with the aqueous extract of AJ significantly enhanced the SFI value. Neurofilament expression in the sciatic nerve was decreased by crushed sciatic nerve injury and treatment with the AJ increased neurofilament expression. The expressions of BDNF and NGF in the sciatic nerve were increased following crushed sciatic nerve injury and treatment with the AJ significantly controlled the sciatic nerve injury-induced increment of BDNF and NGF expressions. c-Fos expressions in the PVN and vIPAG were increased following crushed sciatic nerve injury and treatment with the AJ significantly suppressed the sciatic nerve injury-induced increment of c-Fos expressions. Conclusions : These results suggest that AJ treatment after crushed sciatic nerve injury is effective in the functional recovery by enhancing axonal regeneration and suppressing of pain.

Effects of Haein-tang(Hairen-tang) Extract on Functional Recovery in Sciatic Nerve and c-Fos Expression in the Brain after Crushed Sciatic Nerve Injury in Rats (해인탕 추출물이 흰쥐 좌골신경 손상 모델에서 기능회복과 뇌의 c-Fos 발현에 미치는 영향)

  • Eun, Young-Joon;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.125-142
    • /
    • 2011
  • Objectives : Peripheral nerve injuries are commonly encountered clinical problems and often result in severe functional deficits. The purpose of this study was to evaluate the effects of Haein-tang(Hairen-tang) extract on functional recovery and pain release in the sciatic nerve after crushed sciatic nerve injury in rats. Methods : 1. Sciatic functional index(SFI) were performed on functional recovery. 2. c-Fos immunohistochemistry were performed on c-Fos expressions in the paraventricular nucleus(PVN) and ventrolateral periaqueductal gray(vIPAG). 3. Neurofilament immunohistochemistry were performed on neurofilament regeneration. 4. Western blot were performed on brain-derived neurotrophic factor(BDNF) and nerve growth factor(NGF) expression. Results : 1. Haein-tang(Hairen-tang) extract significantly enhanced the SFI value in the sciatic nerve injury and 100 mg/kg, 200 mg/kg Haein-tang(Hairen-tang)-treated group. 2. Haein-tang(Hairen-tang) extract significantly suppressed the sciatic nerve injury-induced increment of c-Fos expressions in the PVN and vIPAG in the sciatic nerve injury and 100 mg/kg, 200 mg/kg Haein-tang(Hairen-tang)-treated group. 3. Haein-tang(Hairen-tang) extract significantly increased neurofilament expression in the sciatic nerve injury and 50 mg/kg, 100 mg/kg, 200 mg/kg Haein-tang(Hairen-tang)-treated group. 4. Haein-tang(Hairen-tang) extract significantly controled the sciatic nerve injury-induced increment of BDNF and NGF expressions in the sciatic nerve injury and 100 mg/kg, 200 mg/kg Haein-tang(Hairen-tang)-treated group. Conclusions : These results suggest that Haein-tang(Hairen-tang) treatment after sciatic nerve injury is effective for the functional recovery by enhancing of axonal regeneration and suppressing of pain.

The Effects of Nerve Growth Factor Expression of Central Nerve System by Environmental Enrichment and Peripheral Nerve Electrical Stimulation in Brain Ischemia Model Rats (뇌졸중 유발 백서모델에서 환경강화와 말초신경전기자극이 중추신경계의 신경성장인자에 미치는 영향)

  • Kim, Sa-Youl;Kim, Eun-Jung;Kim, Gye-Yeop
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.4
    • /
    • pp.33-41
    • /
    • 2007
  • Purpose: To investigate environmental enrichment and nerve stimulation follows in application times with the change of BDNF & Trk-B receptor in the motor cortex and spinal cord. Methods: Experimental groups were divided into the five groups. Group I: normal control group, Group II: experiment control group, Group III: sciatic never electrical stimulation after MCAO, Group IV: application of only environmental enrichment after MCAO, Group V: never electrical stimulation with environmental enrichment after MCAO. Histologic observation and coronal sections were processed individually in goat polyclonal antibody phosphorylated BDNF and rabbit polyclonal antibody Trk-B receptor. Results: In immunohistochemistric response of BDNF and Trk-B, group II were showed that lower response effect at postischemic 1 days, 3 days, and 7 days. Group V were showed that increase response effect at postischemic 3 days, 7 days and 14 days. Specially showed that the most response effect at postischemic 14 days. In neurobehavioral assessment, group V were significantly difference from other groups on between-subject effects. Conclusion: The above results suggest that combined environmental enrichment with peripheral nerve electrical stimulation in focal ischemic brain injury were more improved that the change of BDNF & Trk-B receptor expression than non treatment.

  • PDF

A comprehensive review of the therapeutic effects of Hericium erinaceus in neurodegenerative disease

  • Kim, Young Ock;Lee, Sang Won;Kim, Jin Seong
    • Journal of Mushroom
    • /
    • v.12 no.2
    • /
    • pp.77-81
    • /
    • 2014
  • Mushrooms are considered not only as food but also for source of physiologically beneficial medicines. The culinary-medicinal mushrooms may important role in the prevention of age-associated neurological dysfunctions, including Alzheimer's and Parkinson's diseases. Hericium erinaceus (H. erinaceus), is edible mushrooms, is a parasitic fungus that grows hanging off of logs and trees and well established candidate for brain and nerve health. H. erinaceus contains high amounts of antioxidants, beta-glucan, polysaccharides and a potent catalyst for brain tissue regeneration and helps to improve memory and cognitive functions. Its fruiting bodies and the fungal mycelia exhibit various pharmacological activities, including the enhancement of the immune system, antitumor, hypoglycemic and anti-aging properties. H. erinaceus stimulates the synthesis of Nerve Growth Factor (NGF) which is the primary protein nutrient responsible for enhancing and repairing neurological disorders. Especially hericenones and erinacines isolated from its fruitin body stimulate NGF, synthesis. This fungus is also utilized to regulate blood levels of glucose, triglycerides and cholesterol. H. erinaceus can be considered as useful therapeutic agents in the management and/or treatment of neurodegeneration diseases. However, this review focuses on in vitro, in vivo and clinical trials for neurodegerative disease.

Effect of Aerobic Exercise on Factors Relative to the Brain Nerve Growth in Girls (유산소운동이 여자 아동의 뇌세포 생성 관련인자에 미치는 영향)

  • Pyun, Mi-Young;Cho, Han-Sam;Jeon, Jae-Young;Kim, Jong-Won;Lee, Kyung-Hee;Lim, Chun-Kyu;Kim, Tae-Un;Kim, Hyun-Jun;Kwak, Yi-Sub;Ko, Ki-Jun
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.948-954
    • /
    • 2010
  • Exercise can favorably influence brain plasticity by facilitating neurogeneration, neuroadaptivity, and neuroprotection. Aerobic exercise has been reported to change brain nerve growth factors (growth hormone, insulin like factor-1, estrogen and serotonin). The purpose of this study was to demonstrate the effects of aerobic exercise for 12 weeks on brain nerve growth factors in girls. Fourteen female participants in elementary school grades 1 through 3 were randomly allocated to the exercise group (EG, n=6) and control group (CG, n=8). The EG participated in 60 minutes of modified ballet exercise as aerobic training three days a week for 12 weeks. Based on comparison between groups by two-way ANOVA with repeated measures, aerobic exercise program participants experienced decreased weight (p<0.01), BMI (p<0.01), fat mass (p<0.001), fat percent (p<0.001) and increased LBM (lean body mass) percent (p<0.001). In addition, we detected that aerobic exercise decreased the level of serotonin (p<0.05) and increased the level of GH (p<0.05) and IGF-1 (p<0.05). These findings suggest that aerobic exercise programs can be an efficient intervention to change body composition, alleviate central fatigue, improve brain function, and induce brain cell proliferation in girls.

The Effects of 12 Weeks Combined Exercise on Brain Nerve Growth Factor, Inflammation-Related Factor in Obese High School Girls (12주 복합운동이 비만 여고생의 뇌신경세포 생성인자 및 염증인자에 미치는 영향)

  • Seo, Jeongpyo;Heo, Junhoe;Kim, Hyunjun;Park, Jangjun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.1
    • /
    • pp.159-168
    • /
    • 2020
  • Purpose : To provide data on exercise prescription for obesity management and prevention of cardiovascular disease in girl's high school and to prepare basic data for more effective exercise program for lifestyle improvement and prevention of lifestyle-related diseases. This study examines the effects on brain nerve growth factor and inflammatory factors, and the relationship between obesity factor and brain neuron cell production factor and inflammatory factor changes by complex exercise. Methods : The subjects of the study were obese students with a body fat percentage of 30 % or higher after obtaining body fat percentage of high school girls in C-city. Among them, 20 students who wanted to participate in the program of this study and did not participate in special exercise and diet therapy within the last 6 months were radio-sampled into groups of exercise group and control group, but attendance rate was low and The final exercise group (9) and control group (9) were measured, except for one student who did not respond. Results : Analysis of the range of variation in body composition, BMI, lean body mass, and the interaction between the groups showed significant differences (p<.05). TC, TG, HDL-C, and LDL-C as variables of blood lipids, TC and TG were not significantly different and TG was significantly different (p<.05) in interactions. HDL-C showed a significant difference (p<.01) in interactions, an increase in exercise group, and a significant decrease in control group (p<.05). There was a significant difference (p<.05) in BDNF interaction, an increase in the exercise group and a decrease in the control group, but no significant difference. NGF tended to increase in both exercise and control groups. IL-6 had a significant difference in timing (p<.05) and significantly decreased (p<.01) in the exercise group, and TNF-α interacted with timing (p<.05), and a significant increase in the control group. Conclusion : This study confirmed 12-week compound exercise program was effective in increasing the expression of basal fitness or CNS factor, but not enough to actually improve brain function. Fat mass and obesity are also affecting vascular inflammatory factors.

Isolation and Characterization of Brain-Derived Neurotrophic Factor Gene from Flounder (Paralichthys olivaceus)

  • LEE JAE HYUNG;CHOI TAE-JIN;NAM SOO WAN;KIM YOUNG TAE
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.838-843
    • /
    • 2005
  • Brain-derived neurotrophic factor (BDNF) is a small secretory protein and a member of the nerve growth factor (NGF) gene family. We cloned the flounder BDNF gene from a flounder brain cDNA library. The nucleotide sequence of the cloned gene showed an open reading frame (ORF) consisting of 810 bp, corresponding to 269 amino acid residues. The tissue distribution of flounder BDNF was determined by reverse transcription-polymerase chain reaction (RT-PCR) in brain, embryo, and muscle tissues. To express fBDNF using a eukaryotic expression system, we constructed the vector mpCTV-BDNF containing the fBDNF gene and transformed this vector into Chlorella ellipsoidea. Stable integration of introduced DNA was confirmed by PCR analysis of genomic DNA, and mRNA expression in C. ellipsoidae was confirmed by RT-PCR analysis.

Nerve Growth Factor Stimulates Glioblastoma Proliferation through Notch1 Receptor Signaling

  • Park, Jun Chul;Chang, In Bok;Ahn, Jun Hyong;Kim, Ji Hee;Song, Joon Ho;Moon, Seung Myung;Park, Young-Han
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.4
    • /
    • pp.441-449
    • /
    • 2018
  • Objective : Notch receptors are heterodimeric transmembrane proteins that regulate cell fate, such as differentiation, proliferation, and apoptosis. Dysregulated Notch pathway signaling has been observed in glioblastomas, as well as in other human malignancies. Nerve growth factor (NGF) is essential for cell growth and differentiation in the nervous system. Recent reports suggest that NGF stimulates glioblastoma proliferation. However, the relationship between NGF and Notch1 in glioblastomas remains unknown. Therefore, we investigated expression of Notch1 in a glioblastoma cell line (U87-MG), and examined the relationship between NGF and Notch1 signaling. Methods : We evaluated expression of Notch1 in human glioblastomas and normal brain tissues by immunohistochemical staining. The effect of NGF on glioblastoma cell line (U87-MG) was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. To evaluate the relationship between NGF and Notch1 signaling, Notch1 and Hes1 expression were evaluated by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. To confirm the effects of NGF on Notch1 signaling, Notch1 and Hes1 small interfering RNAs (siRNAs) were used. Results : In immunohistochemistry, Notch1 expression was higher in glioblastoma than in normal brain tissue. MTT assay showed that NGF stimulates U87-MG cells in a dose-dependent manner. RT-PCR and Western blot analysis demonstrated that Notch1 and Hes1 expression were increased by NGF in a dose-dependent manner. After transfection with Notch1 and Hes1 siRNAs, there was no significant difference between controls and 100 nM $NGF-{\beta}$, which means that U87-MG cell proliferation was suppressed by Notch1 and Hes1 siRNAs. Conclusion : These results indicate that NGF stimulates glioblastoma cell proliferation via Notch1 signaling through Hes 1.

The Effects of Exercise on Neurotrophins, Hepatocyte Growth Factor (HGF), and Oxidative Stress in Obese Children (운동 트레이닝이 비만 어린이의 neurotrophins, HGF (hepatocyte growth factor)와 산화스트레스에 미치는 영향)

  • Woo, Jin-Hee
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.569-574
    • /
    • 2012
  • This study was conducted to investigate the effect of exercise on oxidative stress, nerve growth, and hepatocyte growth factors in obese children. After 12 weeks of aerobic exercise training, the aforementioned parameters before and after the training were compared. As a result, the nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were shown to be lower in the OT than in the NT before and after the training, respectively ($p$ <0.05). The NGF was shown to have increased in both groups after the training ($p$ <0.05). The hepatocyte growth factor (HGF) was shown to be higher in the OT than in the NT before the training ($p$ <0.05), with no difference found afterwards. The malondialdehyde (MDA), ox-LDL, and 8-OHdG (Oxo-2'-deoxyguanosine) were shown to be higher in the OT than in the NT ($p$ <0.05). For ox-LDL, a difference was found between before and after the training ($p$ <0.05). The results of this study showed that obesity induced oxidative stress and caused the abnormalities of nerve and HGF secretion in obese children, and that the 12 weeks of aerobic exercise increased NGF levels, thereby promoting the development of neurogenesis in children.

Studies on the Effect of Ginseng Extract on Chick Embryonic Nerve and Muscle Cells (인삼이 신경 및 근육 세포에 미치는 영향에 대한 연구)

  • 김영중;김은경
    • YAKHAK HOEJI
    • /
    • v.24 no.3_4
    • /
    • pp.143-150
    • /
    • 1980
  • The effect of ginseng saponin on chick embryonic dorsal root ganglia organ culture and brain, spinal cord, muscle dissociation cultures was studied. The fiber outgrowth in explanted chick embryonic dorsal root ganglia was markedly induced by water and alcohol extracts of ginseng, total ginseng saponin, protopanaxadiol and protopanaxatriol glycosides as well as ginsenosides R/sub b1/, R/sub d/, R/sub 0/+R/sub a/+R/sub b1/, and R/sub b2/+R/sub c/+R/sub e/ mixtures. The life span of the cultured chick embryonic dorsal root ganglia and potentiation of nerve cell density were also observed with all of these ginseng saponins. The effect of ginseng saponin on chick embryonic dorsal root ganglia organ culture was more marked in the absence of the chick embryonic extract which was known to contain nerve growth factor-like material in the culture media. However, the ginseng saponin did not influence the cultured central nervous system such as brain and spinal cord cells and cultured skeletal muscle cells with respect to the morphological changes, maturation and life span of these cells.

  • PDF